A highly selective bifunctional nanosensor based on nanocellulose and 3D polypyrrole decorated with silver-gold bimetallic alloy to simultaneously detect methotrexate and ciprofloxacin

[1]  W. Basirun,et al.  The Effect of Acid Hydrolysis Parameters on the Properties of Nanocellulose Extracted from Almond Shells , 2022, Journal of Natural Fibers.

[2]  S. Akhter,et al.  A metal free nanosensor based on nanocellulose-polypyrrole matrix and single-walled carbon nanotube: experimental study and electroanalytical application for determination of paracetamol and ciprofloxacin , 2022, Environmental Nanotechnology, Monitoring & Management.

[3]  S. Akhter,et al.  Carboxylated nanocellulose dispersed nitrogen doped graphene nanosheets and sodium dodecyl sulfate modified electrochemical sensor for the simultaneous determination of paracetamol and naproxen sodium , 2022, Measurement.

[4]  C. Unaleroglu,et al.  A novel design thia-bilane structure-based molecular imprinted electrochemical sensor for sensitive and selective dopamine determination , 2021 .

[5]  Fariba Garkani Nejad,et al.  Simultaneous and selective electrochemical sensing of methotrexate and folic acid in biological fluids and pharmaceutical samples using Fe3O4/ppy/Pd nanocomposite modified screen printed graphite electrode. , 2021, Chemosphere.

[6]  R. Chauhan,et al.  One-pot synthesis of β-cyclodextrin modified silver nanoparticles for highly sensitive detection of ciprofloxacin. , 2021, Journal of pharmaceutical and biomedical analysis.

[7]  E. Moore,et al.  An electrochemical sensor for voltammetric detection of ciprofloxacin using a glassy carbon electrode modified with activated carbon, gold nanoparticles and supramolecular solvent , 2021, Microchimica Acta.

[8]  A. Nafady,et al.  Polyaniline as a sacrificing template for the synthesis of controlled Co3O4 nanoparticles for the sensitive and selective detection of methotrexate (MTX) , 2021, Journal of Materials Science: Materials in Electronics.

[9]  A. Nafady,et al.  Facile Electrochemical Determination of Methotrexate (MTX) Using Glassy Carbon Electrode-Modified with Electronically Disordered NiO Nanostructures , 2021, Nanomaterials.

[10]  Vivek K. Singh,et al.  Tri-metallic Co-Ni-Cu based metal organic framework nanostructures for the detection of an anticancer drug nilutamide , 2021, Sensors and Actuators A: Physical.

[11]  Xuandong Wang,et al.  Selective and efficacious photoelectrochemical detection of ciprofloxacin based on the self-assembly of 2D/2D g-C3N4/Ti3C2 composites , 2021 .

[12]  Yi-Ming Chen,et al.  Folinate Supplementation Ameliorates Methotrexate Induced Mitochondrial Formate Depletion In Vitro and In Vivo , 2021, International journal of molecular sciences.

[13]  Lixin Zhao,et al.  Synergetic effect of nano zero-valent iron and activated carbon on high-level ciprofloxacin removal in hydrolysis-acidogenesis of anaerobic digestion. , 2021, The Science of the total environment.

[14]  S. Bagheri,et al.  Hybrid nanocomposite of functionalized multiwall carbon nanotube, nitrogen doped graphene and chitosan with electrodeposited copper for the detection of anticancer drug nilutamide in tablet and biological samples , 2020 .

[15]  J. G. Manjunatha,et al.  Surfactant and polymer layered carbon composite electrochemical sensor for the analysis of estriol with ciprofloxacin , 2020, Materials Research Innovations.

[16]  Xiaoming Yang,et al.  Electrochemical detection of methotrexate in serum sample based on the modified acetylene black sensor , 2020 .

[17]  Binbin Yang,et al.  Synthesis of bimetallic silver-gold nanoparticle composites using a cellulose dope: Tunable nanostructure and its biological activity. , 2020, Carbohydrate polymers.

[18]  M. Chehimi,et al.  On demand release of ionic silver from gold-silver alloy nanoparticles: fundamental antibacterial mechanisms study , 2020 .

[19]  W. Basirun,et al.  A dopamine electrochemical sensor based on a platinum–silver graphene nanocomposite modified electrode , 2020, RSC advances.

[20]  M. Itagaki,et al.  Sensitive electrochemical detection of ciprofloxacin at screen-printed diamond electrodes , 2020, Carbon.

[21]  Selvaraju Narayanasamy,et al.  Surface modification of nanocellulose using polypyrrole for the adsorptive removal of Congo red dye and chromium in binary mixture. , 2020, International journal of biological macromolecules.

[22]  B. Rezaei,et al.  A novel three-dimensional network of CuCr2O4/CuO nanofibers for voltammetric determination of anticancer drug methotrexate , 2020, Analytical and Bioanalytical Chemistry.

[23]  Sung Jea Park,et al.  Development of a vapor phase polymerization method using a wet-on-wet process to coat polypyrrole on never-dried nanocellulose crystals for fabrication of compression strain sensor , 2020 .

[24]  D. Rana,et al.  Synthesis of sodium cholate mediated rod-like polypyrrole-silver nanocomposite for selective sensing of acetone vapor , 2020 .

[25]  M. Kazemipour,et al.  Cerium-doped flower-shaped ZnO nano-crystallites as a sensing component for simultaneous electrochemical determination of epirubicin and methotrexate , 2019, Microchimica Acta.

[26]  K. Gobi,et al.  Direct electrochemical determination of methotrexate using functionalized carbon nanotube paste electrode as biosensor for in-vitro analysis of urine and dilute serum samples , 2019, Microchemical Journal.

[27]  Y. Liu,et al.  Nanocomposites of Zr(IV)-Based Metal–Organic Frameworks and Reduced Graphene Oxide for Electrochemically Sensing Ciprofloxacin in Water , 2019, ACS Applied Nano Materials.

[28]  Yongfeng Li,et al.  Nanocellulose-based magnetic hybrid aerogel for adsorption of heavy metal ions from water , 2019, Journal of Materials Science.

[29]  S. Bagheri,et al.  Hybrid nanocellulose/f-MWCNTs nanocomposite for the electrochemical sensing of diclofenac sodium in pharmaceutical drugs and biological fluids , 2019, Electrochimica Acta.

[30]  Xu Yan,et al.  Bimetallic gold/silver nanoclusters-gold nanoparticles based fluorescent sensing platform via the inner filter effect for hyaluronidase activity detection , 2019, Sensors and Actuators B: Chemical.

[31]  Kasarla Ramakrushna Reddy,et al.  Fabrication of high performance disposable screen printed electrochemical sensor for ciprofloxacin sensing in biological samples , 2018, Measurement.

[32]  S. Mondal Review on Nanocellulose Polymer Nanocomposites , 2018 .

[33]  J. Marty,et al.  Disposable electrochemical aptasensor based on carbon nanotubes- V2O5-chitosan nanocomposite for detection of ciprofloxacin , 2018, Sensors and Actuators B: Chemical.

[34]  X. Wen,et al.  Electrochemical oxidation of ciprofloxacin in two different processes: the electron transfer process on the anode surface and the indirect oxidation process in bulk solutions. , 2018, Environmental science. Processes & impacts.

[35]  S. Bagheri,et al.  Enhanced amperometric detection of paracetamol by immobilized cobalt ion on functionalized MWCNTs - Chitosan thin film. , 2018, Analytical biochemistry.

[36]  Han Gao,et al.  Wet-spinning assembly of cellulose nanofibers reinforced graphene/polypyrrole microfibers for high performance fiber-shaped supercapacitors , 2018 .

[37]  Zhihong Yan,et al.  A Graphene Oxide‐DNA Electrochemical Sensor Based on Glassy Carbon Electrode for Sensitive Determination of Methotrexate , 2018 .

[38]  N. A. Kadri,et al.  Immobilized copper ions on MWCNTS-Chitosan thin film: Enhanced amperometric sensor for electrochemical determination of diclofenac sodium in aqueous solution , 2017 .

[39]  A. I. Zad,et al.  Glassy carbon electrode modified with 3D graphene–carbon nanotube network for sensitive electrochemical determination of methotrexate , 2017 .

[40]  K. Yan,et al.  In situ anodic stripping of Cd(II) from CdS quantum dots for electrochemical sensing of ciprofloxacin , 2016 .

[41]  B. Dhananjaya,et al.  A facile and green strategy for the synthesis of Au, Ag and Au-Ag alloy nanoparticles using aerial parts of R. hypocrateriformis extract and their biological evaluation. , 2016, Enzyme and microbial technology.

[42]  H. Bagheri,et al.  Fabrication of an electrochemical sensor based on magnetic multi-walled carbon nanotubes for the determination of ciprofloxacin , 2016 .

[43]  M. Montemurro,et al.  Optimized high performance liquid chromatography–ultraviolet detection method using core-shell particles for the therapeutic monitoring of methotrexate☆ , 2015, Journal of pharmaceutical analysis.

[44]  B. Dhananjaya,et al.  Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[45]  Yanqun Ning,et al.  Highly sensitive determination of methotrexate at poly (l-lysine) modified electrode in the presence of sodium dodecyl benzene sulfonate. , 2014, Bioelectrochemistry.

[46]  K. Maitland,et al.  Determination of ciprofloxacin in human plasma using high-performance liquid chromatography coupled with fluorescence detection: Application to a population pharmacokinetics study in children with severe malnutrition , 2011, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[47]  Ersin Emre Oren,et al.  Metal recognition of septapeptides via polypod molecular architecture. , 2005, Nano letters.

[48]  Samin Hamidi,et al.  A novel mixed hemimicelles dispersive micro-solid phase extraction using ionic liquid functionalized magnetic graphene oxide/polypyrrole for extraction and pre-concentration of methotrexate from urine samples followed by the spectrophotometric method. , 2019, Clinica chimica acta; international journal of clinical chemistry.

[49]  M. Egyed,et al.  The Hematologic Toxicity of Methotrexate in Patients with Autoimmune Disorders , 2017 .

[50]  H. R. Salgado,et al.  Spectrophotometric Determination of Ciprofloxacin Hydrochloride in Ophthalmic Solution , 2012 .