Geometry of Thermodynamic Processes

Since the 1970s, contact geometry has been recognized as an appropriate framework for the geometric formulation of thermodynamic systems, and in particular their state properties. More recently it has been shown how the symplectization of contact manifolds provides a new vantage point; enabling, among other things, to switch easily between the energy and entropy representations of a thermodynamic system. In the present paper, this is continued towards the global geometric definition of a degenerate Riemannian metric on the homogeneous Lagrangian submanifold describing the state properties, which is overarching the locally-defined metrics of Weinhold and Ruppeiner. Next, a geometric formulation is given of non-equilibrium thermodynamic processes, in terms of Hamiltonian dynamics defined by Hamiltonian functions that are homogeneous of degree one in the co-extensive variables and zero on the homogeneous Lagrangian submanifold. The correspondence between objects in contact geometry and their homogeneous counterparts in symplectic geometry, is extended to the definition of port-thermodynamic systems and the formulation of interconnection ports. The resulting geometric framework is illustrated on a number of simple examples, already indicating its potential for analysis and control.

[1]  V. Mehrmann,et al.  Open physical systems: from GENERIC to port-Hamiltonian systems , 2018, 1804.04064.

[2]  A. Schaft,et al.  Homogeneous Hamiltonian Control Systems Part I: Geometric Formulation , 2018 .

[3]  François Gay-Balmaz,et al.  A Lagrangian variational formulation for nonequilibrium thermodynamics , 2018 .

[4]  A. Schaft,et al.  Homogeneous Hamiltonian Control Systems Part II: Application to thermodynamic systems , 2018 .

[5]  D. Gromov,et al.  The geometric structure of interconnected thermo-mechanical systems. , 2017 .

[6]  Bernhard Maschke,et al.  Partial Stabilization of Input-Output Contact Systems on a Legendre Submanifold , 2017, IEEE Transactions on Automatic Control.

[7]  H. Yoshimura,et al.  A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems , 2017 .

[8]  D. Gromov Two Approaches to the Description of the Evolution of Thermodynamic Systems , 2016 .

[9]  Diana Bohm,et al.  L2 Gain And Passivity Techniques In Nonlinear Control , 2016 .

[10]  Alessandro Bravetti,et al.  Conformal Gauge Transformations in Thermodynamics , 2015, Entropy.

[11]  Cesar S. Lopez-Monsalvo,et al.  Contact Symmetries and Hamiltonian Thermodynamics , 2014, 1409.7340.

[12]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems Theory: An Introductory Overview , 2014, Found. Trends Syst. Control..

[13]  Miroslav Grmela,et al.  Contact Geometry of Mesoscopic Thermodynamics and Dynamics , 2014, Entropy.

[14]  M. Krüger,et al.  On a variational principle in thermodynamics , 2013 .

[15]  Bernhard Maschke,et al.  Feedback equivalence of input-output contact systems , 2013, Syst. Control. Lett..

[16]  Daniel Sbarbaro,et al.  Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR , 2013 .

[17]  F. Opitz Information geometry and its applications , 2012, 2012 9th European Radar Conference.

[18]  Denis Dochain,et al.  An entropy-based formulation of irreversible processes based on contact structures , 2010 .

[19]  Denis Dochain,et al.  Some Properties of Conservative Port Contact Systems , 2009, IEEE Transactions on Automatic Control.

[20]  Bernhard Maschke,et al.  An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes , 2007 .

[21]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[22]  Arjan van der Schaft,et al.  Hamiltonian dynamics with external forces and observations , 1981, Mathematical systems theory.

[23]  Arjan van der Schaft,et al.  Hamiltonian formulation of bond graphs , 2003 .

[24]  R. Mrugaa̵,et al.  On a special family of thermodynamic processes and their invariants , 2000 .

[25]  R. Balian,et al.  Hamiltonian structure of thermodynamics with gauge , 2000, cond-mat/0007292.

[26]  R. Mrugala,et al.  On contact and metric structures on thermodynamic spaces (量子情報と量子カオスの数理) , 2000 .

[27]  David L. Elliott,et al.  Geometric control theory , 2000, IEEE Trans. Autom. Control..

[28]  V. Jurdjevic Geometric control theory , 1996 .

[29]  A. Schaft,et al.  The Hamiltonian formulation of energy conserving physical systems with external ports , 1995 .

[30]  A. J. van der Schaft,et al.  Port-controlled Hamiltonian Systems:Modelling Origins and System-Theoretic Properties , 1992 .

[31]  A. Schaft,et al.  Port-controlled Hamiltonian systems : modelling origins and systemtheoretic properties , 1992 .

[32]  Peter Salamon,et al.  Contact structure in thermodynamic theory , 1991 .

[33]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[34]  Schoen,et al.  Statistical approach to the geometric structure of thermodynamics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[35]  A. Schaft System theory and mechanics , 1989 .

[36]  A. Schaft,et al.  Variational and Hamiltonian Control Systems , 1987 .

[37]  Charles-Michel Marle,et al.  Symplectic geometry and analytical mechanics , 1987 .

[38]  Philip J. Morrison,et al.  A paradigm for jointed Hamiltonian and dissipative systems , 1986 .

[39]  R. Mrugala,et al.  Submanifolds in the thermodynamic phase space , 1985 .

[40]  R. Mrugala On equivalence of two metrics in classical thermodynamics , 1984 .

[41]  Peter Salamon,et al.  On the relation between entropy and energy versions of thermodynamic length , 1984 .

[42]  G. Ruppeiner,et al.  Thermodynamics: A Riemannian geometric model , 1979 .

[43]  R. MrugaŁa,et al.  Geometrical formulation of equilibrium phenomenological thermodynamics , 1978 .

[44]  Frank Weinhold,et al.  Metric geometry of equilibrium thermodynamics , 1975 .

[45]  T. J. Willmore,et al.  TANGENT AND COTANGENT BUNDLES , 1975 .

[46]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[47]  D. Whiffen Thermodynamics , 1973, Nature.

[48]  Robert Hermann,et al.  Geometry, physics, and systems , 1973 .

[49]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[50]  L. Tisza The thermodynamics of phase equilibrium , 1961 .

[51]  P. S. Bauer Dissipative Dynamical Systems: I. , 1931, Proceedings of the National Academy of Sciences of the United States of America.