Origin mechanism of heterostructure nanograins with gradient grain size suppressing strain localization

[1]  H. Urbassek,et al.  A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites , 2022, Nature Communications.

[2]  H. Gleiter,et al.  Dislocation exhaustion and ultra-hardening of nanograined metals by phase transformation at grain boundaries , 2022, Nature Communications.

[3]  A. Kashiwar,et al.  Shear banding-activated dynamic recrystallization and phase transformation during quasi-static loading of β-metastable Ti – 12 wt % Mo alloy , 2022, Acta Materialia.

[4]  S. Brinckmann,et al.  Massive interstitial solid solution alloys achieve near-theoretical strength , 2022, Nature Communications.

[5]  Hui-bin Wu,et al.  Superior fracture toughness in a high-strength austenitic steel with heterogeneous lamellar microstructure , 2022, Acta Materialia.

[6]  Chong-xiang Huang,et al.  Activating dispersed strain bands in tensioned nanostructure layer for high ductility: the effects of microstructure inhomogeneity , 2021, International Journal of Plasticity.

[7]  Guoqing Chen,et al.  Friction control by tailoring deformation mechanism of interfacial grains in metals , 2021, Materials Science and Engineering: A.

[8]  K. An,et al.  Gradient cell–structured high-entropy alloy with exceptional strength and ductility , 2021, Science.

[9]  Xiaolei Wu,et al.  Heterostructured Materials , 2021, Progress in Materials Science.

[10]  Yifan Zhang,et al.  High-strength nanocrystalline intermetallics with room temperature deformability enabled by nanometer thick grain boundaries , 2021, Science Advances.

[11]  Jianzhong Jiang,et al.  Extra plasticity governed by shear band deflection in gradient metallic glasses , 2021, Nature communications.

[12]  Xiaolei Wu,et al.  Gradient and lamellar heterostructures for superior mechanical properties , 2021, MRS Bulletin.

[13]  Tao Yang,et al.  Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures , 2020, Nature Communications.

[14]  F. Sansoz,et al.  Heterogeneous solute segregation suppresses strain localization in nanocrystalline Ag-Ni alloys , 2020 .

[15]  Guoqing Chen,et al.  The role of pyramidal 〈  +  〉 dislocations in the grain refinement mechanism in Ti-6Al-4V alloy processed by severe plastic deformation , 2020 .

[16]  Guang-Ping Zhang,et al.  Enhanced strain delocalization through formation of dispersive micro shear bands in laminated Ni , 2020 .

[17]  Huajian Gao,et al.  Towards understanding the structure–property relationships of heterogeneous-structured materials , 2020 .

[18]  Z. Zhang,et al.  Strong and plastic metallic composites with nanolayered architectures , 2020 .

[19]  Huajian Gao,et al.  Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys , 2020, Nature Reviews Materials.

[20]  T. Pardoen,et al.  High temperature rise dominated cracking mechanisms in ultra-ductile and tough titanium alloy , 2020, Nature Communications.

[21]  D. Gianola,et al.  Suppression of shear localization in nanocrystalline Al–Ni–Ce via segregation engineering , 2020 .

[22]  R. Scattergood,et al.  Dense dispersed shear bands in gradient-structured Ni , 2020, International Journal of Plasticity.

[23]  M. Meyers,et al.  The effects of ultra-fine-grained structure and cryogenic temperature on adiabatic shear localization in titanium , 2019, Acta Materialia.

[24]  J. Kelleher,et al.  High-cycle-fatigue induced continuous grain growth in ultrafine-grained titanium , 2019, Acta Materialia.

[25]  F. Yuan,et al.  Ductility by shear band delocalization in the nano-layer of gradient structure , 2018, Heterostructured Materials.

[26]  Qingping Sun,et al.  Grain refinement and amorphization in nanocrystalline NiTi micropillars under uniaxial compression , 2018, Scripta Materialia.

[27]  Huajian Gao,et al.  Mechanical properties and optimal grain size distribution profile of gradient grained nickel , 2018, Acta Materialia.

[28]  Blythe G. Clark,et al.  Achieving Ultralow Wear with Stable Nanocrystalline Metals , 2018, Advanced materials.

[29]  Xiaolei Wu,et al.  Ductility and Plasticity of Nanostructured Metals: Differences and Issues , 2018, Heterostructured Materials.

[30]  Jianqiu Zhou,et al.  Grain size gradient and length scale effect on mechanical behaviors of surface nanocrystalline metals , 2018 .

[31]  Xiang Chen,et al.  Friction and Wear Reduction in Copper with a Gradient Nano-grained Surface Layer. , 2018, ACS applied materials & interfaces.

[32]  T. Langdon,et al.  Using heat treatments, high-pressure torsion and post-deformation annealing to optimize the properties of Ti-6Al-4V alloys , 2017 .

[33]  Y. Estrin,et al.  What governs ductility of ultrafine-grained metals? A microstructure based approach to necking instability , 2017 .

[34]  K. Hemker,et al.  Experimental quantification of mechanically induced boundary migration in nanocrystalline copper films , 2017 .

[35]  Huihui Yu,et al.  The mechanism for the high dependence of the Hall-Petch slope for twinning/slip on texture in Mg alloys , 2017 .

[36]  K. Luo,et al.  Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts , 2017 .

[37]  K. Vecchio,et al.  Dynamic deformation and failure of ultrafine-grained titanium , 2017 .

[38]  D. Rugg,et al.  Microstructural characterisation of metallic shot peened and laser shock peened Ti–6Al–4V , 2017 .

[39]  Xiang Chen,et al.  Lowering coefficient of friction in Cu alloys with stable gradient nanostructures , 2016, Science Advances.

[40]  P. Zhang,et al.  Cyclic softening behaviors of ultra-fine grained Cu-Zn alloys , 2016 .

[41]  C. Schuh,et al.  Six decades of the Hall–Petch effect – a survey of grain-size strengthening studies on pure metals , 2016 .

[42]  K. Lu Stabilizing nanostructures in metals using grain and twin boundary architectures , 2016 .

[43]  F. Yuan,et al.  Back stress strengthening and strain hardening in gradient structure , 2016 .

[44]  Z. Pan,et al.  Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility , 2016, Nature Communications.

[45]  T. Rupert,et al.  Disruption of Thermally-Stable Nanoscale Grain Structures by Strain Localization , 2015, Scientific Reports.

[46]  P. Trimby,et al.  Shear banding in commercial pure titanium deformed by dynamic compression , 2014 .

[47]  K. Lu Making strong nanomaterials ductile with gradients , 2014, Science.

[48]  Fuping Yuan,et al.  Extraordinary strain hardening by gradient structure , 2014, Proceedings of the National Academy of Sciences.

[49]  K. Lu,et al.  Tension-induced softening and hardening in gradient nanograined surface layer in copper , 2014 .

[50]  T. Rupert,et al.  Emergence of localized plasticity and failure through shear banding during microcompression of a nanocrystalline alloy , 2014, 1407.5925.

[51]  H. W. Zhang,et al.  Strain-Induced Ultrahard and Ultrastable Nanolaminated Structure in Nickel , 2013, Science.

[52]  P. Čížek,et al.  Work hardening in ultrafine-grained titanium: Multilayering and grading , 2013 .

[53]  P. Hodgson,et al.  The role of shear banding on the fatigue ductility of ultrafine-grained aluminium , 2013 .

[54]  H. Mao,et al.  Texture of Nanocrystalline Nickel: Probing the Lower Size Limit of Dislocation Activity , 2012, Science.

[55]  D. T. McDonald,et al.  A modified Hall–Petch relationship in ultrafine-grained titanium recycled from chips by equal channel angular pressing , 2012 .

[56]  Xiao-wu Li,et al.  Compressive Deformation Behaviors of Coarse- and Ultrafine-Grained Pure Titanium at Different Temperatures: A Comparative Study , 2011 .

[57]  N. Tao,et al.  Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper , 2011, Science.

[58]  C. Wen,et al.  Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium , 2010 .

[59]  Christopher A. Schuh,et al.  Sliding wear of nanocrystalline Ni-W: Structural evolution and the apparent breakdown of Archard scaling , 2010 .

[60]  K. Luo,et al.  Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts , 2010 .

[61]  Jun Sun,et al.  Strong crystal size effect on deformation twinning , 2010, Nature.

[62]  D. Gianola,et al.  Experimental Observations of Stress-Driven Grain Boundary Migration , 2009, Science.

[63]  Huajian Gao,et al.  Competing grain-boundary- and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum , 2009, Proceedings of the National Academy of Sciences.

[64]  K. Cooper,et al.  Nanomechanics of Hall-Petch relationship in nanocrystalline materials , 2009 .

[65]  Z. Suo,et al.  Failure by simultaneous grain growth, strain localization, and interface debonding in metal films on polymer substrates , 2009 .

[66]  D. Gianola,et al.  In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films , 2008 .

[67]  S. Brandstetter,et al.  From Micro‐ to Macroplasticity , 2006 .

[68]  K. T. Ramesh,et al.  Plastic flow localization in bulk tungsten with ultrafine microstructure , 2005 .

[69]  Jian Lu,et al.  Nanostructure formation mechanism of α-titanium using SMAT , 2004 .

[70]  R. Valiev,et al.  Nanostructuring of metals by severe plastic deformation for advanced properties , 2004, Nature materials.

[71]  Yinmin M Wang,et al.  Three strategies to achieve uniform tensile deformation in a nanostructured metal , 2004 .

[72]  K. T. Ramesh,et al.  Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron , 2003 .

[73]  Fenghua Zhou,et al.  High tensile ductility in a nanostructured metal , 2002, Nature.

[74]  K. T. Ramesh,et al.  Deformation behavior and plastic instabilities of ultrafine-grained titanium , 2001 .

[75]  W. T. Read,et al.  Multiplication Processes for Slow Moving Dislocations , 1950 .

[76]  R. Misra,et al.  Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure , 2022, Journal of Materials Science & Technology.