A Dynamic Data Structure for Counting Subgraphs in Sparse Graphs

We present a dynamic data structure representing a graph G, which allows addition and removal of edges from G and can determine the number of appearances of a graph of a bounded size as an induced subgraph of G. The queries are answered in constant time. When the data structure is used to represent graphs from a class with bounded expansion (which includes planar graphs and more generally all proper classes closed on topological minors, as well as many other natural classes of graphs with bounded average degree), the amortized time complexity of updates is polylogarithmic.

[1]  David R. Wood,et al.  On the Maximum Number of Cliques in a Graph , 2006, Graphs Comb..

[2]  David Eppstein,et al.  The h-Index of a Graph and Its Application to Dynamic Subgraph Statistics , 2009, WADS.

[3]  J. Nesetril,et al.  Structural Properties of Sparse Graphs , 2008, Electron. Notes Discret. Math..

[4]  Gerth Stølting Brodal,et al.  Dynamic Representation of Sparse Graphs , 1999, WADS.

[5]  Jaroslav Nesetril,et al.  On nowhere dense graphs , 2011, Eur. J. Comb..

[6]  Jaroslav Nesetril,et al.  Linear time low tree-width partitions and algorithmic consequences , 2006, STOC '06.

[7]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[8]  Friedrich Eisenbrand,et al.  On the complexity of fixed parameter clique and dominating set , 2004, Theor. Comput. Sci..

[9]  Jaroslav Nesetril,et al.  Characterisations and examples of graph classes with bounded expansion , 2009, Eur. J. Comb..

[10]  Robin Thomas,et al.  Testing first-order properties for subclasses of sparse graphs , 2011, JACM.

[11]  Robin Thomas,et al.  Deciding First-Order Properties for Sparse Graphs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[12]  Zdenek Dvorak,et al.  On forbidden subdivision characterizations of graph classes , 2008, Eur. J. Comb..

[13]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[14]  Daniel Král,et al.  Algorithms for Classes of Graphs with Bounded Expansion , 2009, WG.

[15]  David Eppstein,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.

[16]  Martin Grohe,et al.  Deciding first-order properties of locally tree-decomposable structures , 2000, JACM.

[17]  Paul D. Seymour,et al.  Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.

[18]  Carsten Thomassen Five-Coloring Graphs on the Torus , 1994, J. Comb. Theory, Ser. B.

[19]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[20]  Jaroslav Nesetril,et al.  First order properties on nowhere dense structures , 2010, The Journal of Symbolic Logic.

[21]  Martina Morris,et al.  Advances in exponential random graph (p*) models , 2007, Soc. Networks.

[22]  David Eppstein,et al.  Extended h-Index Parameterized Data Structures for Computing Dynamic Subgraph Statistics , 2010, ArXiv.

[23]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..

[24]  Dieter Kratsch,et al.  Finding and Counting Small Induced Subgraphs Efficiently , 1995, WG.

[25]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[26]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[27]  Tijana Milenkoviæ,et al.  Uncovering Biological Network Function via Graphlet Degree Signatures , 2008, Cancer informatics.

[28]  Marek Chrobak,et al.  Planar Orientations with Low Out-degree and Compaction of Adjacency Matrices , 1991, Theor. Comput. Sci..

[29]  Svatopluk Poljak,et al.  On the complexity of the subgraph problem , 1985 .