On the Use of Conjunctors With a Neutral Element in the Modus Ponens Inequality

Departamento de Ciencias de la Computación, Arquitectura de Computadores, Lenguajes y Sistemas Informáticos y Estadística e Investigación Operativa, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain Soft Computing, Image Processing and Aggregation (SCOPIA) Research Group, Department of Mathematics and Computer Science, University of the Balearic Islands, 07122 Palma, Spain Balearic Islands Health Research Institute (IdISBa), 07010 Palma, Spain

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Magdalena Baczynska Fuzzy Implication Functions: Recent Advances , 2012, SOCO 2012.

[3]  Yao Ouyang,et al.  On fuzzy implications determined by aggregation operators , 2012, Inf. Sci..

[4]  Humberto Bustince,et al.  The law of O-conditionality for fuzzy implications constructed from overlap and grouping functions , 2019, Int. J. Approx. Reason..

[5]  Joan Torrens,et al.  A survey on the existing classes of uninorms , 2015, J. Intell. Fuzzy Syst..

[6]  Joan Torrens,et al.  Generalized Modus Ponens for (U, N)-implications , 2018, IPMU.

[7]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[8]  Michal Baczynski,et al.  Fuzzy Implications: Past, Present, and Future , 2015, Handbook of Computational Intelligence.

[9]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[10]  Joan Torrens,et al.  RU and (U, N)-implications satisfying Modus Ponens , 2016, Int. J. Approx. Reason..

[11]  Bernard De Baets,et al.  Negation and affirmation: the role of involutive negators , 2007, Soft Comput..

[12]  Michal Baczynski,et al.  Fuzzy Implications , 2008, Studies in Fuzziness and Soft Computing.

[13]  Joan Torrens,et al.  An Overview of Construction Methods of Fuzzy Implications , 2013 .

[14]  Przemyslaw Grzegorzewski,et al.  Probabilistic implications , 2013, Fuzzy Sets Syst..

[15]  Vicenç Torra,et al.  Modeling decisions - information fusion and aggregation operators , 2007 .

[16]  L. Valverde,et al.  ON MODE AND IMPLICATION IN APPROXIMATE REASONING , 1993 .

[17]  Joan Torrens,et al.  Uninorm based residual implications satisfying the Modus Ponens property with respect to a uninorm , 2019, Fuzzy Sets Syst..

[18]  Joan Torrens,et al.  A Survey on Fuzzy Implication Functions , 2007, IEEE Transactions on Fuzzy Systems.

[19]  Martin Kalina,et al.  Implication Functions Generated Using Functions of One Variable , 2013 .

[20]  J. Fodor On fuzzy implication operators , 1991 .

[21]  Gleb Beliakov,et al.  Aggregation Functions: A Guide for Practitioners , 2007, Studies in Fuzziness and Soft Computing.

[22]  R. Mesiar,et al.  Triangular Norm-Based Aggregation of Evidence Under Fuzziness , 1998 .

[23]  Joan Torrens,et al.  The non-contradiction principle related to natural negations of fuzzy implication functions , 2019, Fuzzy Sets Syst..

[24]  R. Mesiar,et al.  Conjunctors and their Residual Implicators: Characterizations and Construction Methods , 2007 .

[25]  János Fodor,et al.  A new look at fuzzy connectives , 1993 .

[26]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[27]  Joan Torrens,et al.  Equivalence and characterization of probabilistic and survival implications , 2019, Fuzzy Sets Syst..

[28]  Joan Torrens,et al.  A construction method of semicopulas from fuzzy negations , 2013, Fuzzy Sets Syst..

[29]  Bernard De Baets,et al.  Basic properties of implicators in a residual framework. , 1999 .

[30]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[31]  E. Trillas,et al.  On MPT-implication functions for Fuzzy Logic , 2004 .

[32]  Bernard De Baets,et al.  Residual operators of uninorms , 1999, Soft Comput..

[33]  Joan Torrens,et al.  A characterization of residual implications derived from left-continuous uninorms , 2010, Inf. Sci..

[34]  G. Mayor,et al.  On a class of binary operations: non-strict Archimedean aggregation functions , 1988, [1988] Proceedings. The Eighteenth International Symposium on Multiple-Valued Logic.

[35]  Maria Adler,et al.  Mathematical Principles Of Fuzzy Logic , 2016 .

[36]  Michal Baczynski,et al.  Properties of the probabilistic implications and S-implications , 2016, Inf. Sci..

[37]  Yun Shi,et al.  On dependencies and independencies of fuzzy implication axioms , 2010, Fuzzy Sets Syst..

[38]  Ronald R. Yager,et al.  Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations , 2018, Communications in Computer and Information Science.

[39]  Joan Torrens,et al.  From three to one: Equivalence and characterization of material implications derived from co-copulas, probabilistic S-implications and survival S-implications , 2017, Fuzzy Sets Syst..

[40]  Humberto Bustince,et al.  A review of the relationships between implication, negation and aggregation functions from the point of view of material implication , 2016, Inf. Sci..

[41]  Joan Torrens,et al.  Continuous R-implications generated from representable aggregation functions , 2010, Fuzzy Sets Syst..