Dynamics of K$_2$Ni$_2$(SO$_4$)$_3$ governed by proximity to a 3D spin liquid model

Quantum spin liquids (QSLs) have become a key area of research in magnetism due to their remarkable properties, such as long-range entanglement, fractional excitations, pinch-point singularities, and topologically protected phenomena. In recent years, the search for QSLs has expanded into the three-dimensional world, where promising features have been found in materials that form pyrochlore and hyper-kagome lattices, despite the suppression of quantum fluctuations due to high dimensionality. One such material is the $S = 1$ K$_2$Ni$_2$(SO$_4$)$_3$ compound, which belongs to the langbeinite family consisting of two interconnected trillium lattices. Although magnetically ordered, K$_2$Ni$_2$(SO$_4$)$_3$ has been found to exhibit a highly dynamical and correlated state which can be driven into a pure quantum spin liquid under magnetic fields of only $B \simeq 4$~T. In this article, we combine inelastic neutron scattering measurements with pseudo-fermion functional renormalization group (PFFRG) and classical Monte Carlo (cMC) calculations to study the magnetic properties of K$_2$Ni$_2$(SO$_4$)$_3$, revealing a high level of agreement between the experiment and theory. We further reveal the origin of the dynamical state in K$_2$Ni$_2$(SO$_4$)$_3$ by studying a larger set of exchange parameters, uncovering an `island of liquidity' around a focal point given by a magnetic network composed of tetrahedra on a trillium lattice.

[1]  S. Trebst,et al.  Pseudo-fermion functional renormalization group for spin models , 2023, 2307.10359.

[2]  J. Reuther,et al.  Quantum Effects on Unconventional Pinch Point Singularities. , 2022, Physical review letters.

[3]  J. Oitmaa,et al.  Classical and quantum phases of the pyrochlore $S=1/2$ magnet with Heisenberg and Dzyaloshinskii-Moriya interactions , 2022, 2211.08823.

[4]  K. Kim,et al.  Signatures of spin-liquid state in a 3D frustrated lattice compound KSrFe2(PO4)3 with S = 5/2 , 2022, APL Materials.

[5]  Yong Baek Kim,et al.  Competing quantum spin liquids, gauge fluctuations, and anisotropic interactions in a breathing pyrochlore lattice , 2022, Physical Review B.

[6]  J. Reuther,et al.  Enhanced symmetry-breaking tendencies in the $S=1$ pyrochlore antiferromagnet , 2022, 2207.01642.

[7]  S. Trebst,et al.  Pinch-points to half-moons and up in the stars: The kagome skymap , 2022, Physical Review Research.

[8]  H. Jeschke,et al.  Magnetic Field Induced Quantum Spin Liquid in the Two Coupled Trillium Lattices of K_{2}Ni_{2}(SO_{4})_{3}. , 2021, Physical review letters.

[9]  R. Valentí,et al.  Phase diagram of a distorted kagome antiferromagnet and application to Y-kapellasite , 2021, npj Computational Materials.

[10]  H. Jeschke,et al.  Evidence for a three-dimensional quantum spin liquid in PbCuTe2O6 , 2020, Nature Communications.

[11]  B. Svistunov,et al.  Quantum-to-classical correspondence in two-dimensional Heisenberg models , 2019, Physical Review B.

[12]  G. Jackeli,et al.  Concept and realization of Kitaev quantum spin liquids , 2019, Nature Reviews Physics.

[13]  S. Cheong,et al.  Experimental signatures of a three-dimensional quantum spin liquid in effective spin-1/2 Ce2Zr2O7 pyrochlore , 2019, Nature Physics.

[14]  J. D. Alzate-Cardona,et al.  Optimal phase space sampling for Monte Carlo simulations of Heisenberg spin systems , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  N. Shannon,et al.  Half moons are pinch points with dispersion , 2018, Physical Review B.

[16]  R. Moessner,et al.  Magnetic clustering, half-moons, and shadow pinch points as signals of a proximate Coulomb phase in frustrated Heisenberg magnets , 2018, Physical Review B.

[17]  R. Nandkishore,et al.  Pinch point singularities of tensor spin liquids , 2018, Physical Review B.

[18]  C. Batista,et al.  Dynamical structure factor of the triangular antiferromagnet: Schwinger boson theory beyond mean field , 2018, Physical Review B.

[19]  K. Kakurai,et al.  Structure of the magnetic excitations in the spin-1/2 triangular-lattice Heisenberg antiferromagnet Ba3CoSb2O9 , 2017, Nature Communications.

[20]  A. Banerjee,et al.  Neutron scattering in the proximate quantum spin liquid α-RuCl3 , 2017, Science.

[21]  H. Jeschke,et al.  Signatures of a gearwheel quantum spin liquid in a spin- 12 pyrochlore molybdate Heisenberg antiferromagnet , 2017, 1705.05291.

[22]  J. Reuther,et al.  Numerical treatment of spin systems with unrestricted spin length S : A functional renormalization group study , 2016, 1612.05074.

[23]  Arnab Sen,et al.  Fractionalized Z_{2} Classical Heisenberg Spin Liquids. , 2016, Physical review letters.

[24]  G. Ehlers,et al.  Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4 , 2016, Nature Physics.

[25]  T. Perring,et al.  Horace: Software for the analysis of data from single crystal spectroscopy experiments at time-of-flight neutron instruments , 2016, 1604.05895.

[26]  R. Thomale,et al.  Functional renormalization group for three-dimensional quantum magnetism , 2016, 1604.03438.

[27]  S. Petit,et al.  Observation of magnetic fragmentation in spin ice , 2016, Nature Physics.

[28]  L. Balents,et al.  Quantum spin liquids: a review , 2016, Reports on progress in physics. Physical Society.

[29]  L. Jaubert,et al.  A spin-liquid with pinch-line singularities on the pyrochlore lattice , 2015, Nature Communications.

[30]  G. Ehlers,et al.  Static and Dynamical Properties of the Spin-1/2 Equilateral Triangular-Lattice Antiferromagnet Ba_{3}CoSb_{2}O_{9}. , 2015, Physical review letters.

[31]  T. Perring,et al.  Fractional excitations in the square lattice quantum antiferromagnet , 2014, Nature Physics.

[32]  M. Gingras,et al.  Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets , 2013, Reports on progress in physics. Physical Society.

[33]  Robert Bewley,et al.  LET, a cold neutron multi-disk chopper spectrometer at ISIS , 2011 .

[34]  D. Morris Dirac Strings and Magnetic Monopoles in the Spin Ice, Dy$_{2}$Ti$_{2}$O$_{7}$ , 2010 .

[35]  P. P. Deen,et al.  Magnetic Coulomb Phase in the Spin Ice Ho2Ti2O7. , 2009 .

[36]  J. Reuther,et al.  J 1 -J 2 frustrated two-dimensional Heisenberg model: Random phase approximation and functional renormalization group , 2009, 0912.0860.

[37]  R. Moessner,et al.  Dirac Strings and Magnetic Monopoles in the Spin Ice Dy2Ti2O7 , 2009, Science.

[38]  G. Jackeli,et al.  Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. , 2008, Physical review letters.

[39]  S. Isakov,et al.  Fate of partial order on trillium and distorted windmill lattices , 2008, 0804.0133.

[40]  H. Takagi,et al.  Spin-liquid state in the S=1/2 hyperkagome antiferromagnet Na4Ir3O8. , 2007, Physical review letters.

[41]  H. Kee,et al.  Geometric frustration inherent to the trillium lattice, a sublattice of the B20 structure , 2005, cond-mat/0509586.

[42]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[43]  C. Henley,et al.  Power-law spin correlations in pyrochlore antiferromagnets , 2004, cond-mat/0407005.

[44]  R. Moessner,et al.  Dipolar spin correlations in classical pyrochlore magnets. , 2004, Physical review letters.

[45]  Helmut Eschrig,et al.  FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .

[46]  F. Mila LOW-ENERGY SECTOR OF THE S = 1/2 KAGOME ANTIFERROMAGNET , 1998, cond-mat/9805078.

[47]  R. Moessner,et al.  Properties of a classical spin liquid: the Heisenberg pyrochlore antiferromagnet , 1997, cond-mat/9712063.

[48]  P. Sindzingre,et al.  Order versus disorder in the quantum Heisenberg antiferromagnet on the kagomé lattice using exact spectra analysis , 1997, cond-mat/9706167.

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[51]  Sachdev,et al.  Kagomé- and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. , 1992, Physical review. B, Condensed matter.

[52]  T. Ikeda,et al.  Phase Transitions in Some Langbeinite-Type Crystals , 1977 .

[53]  Philip W. Anderson,et al.  Resonating valence bonds: A new kind of insulator? , 1973 .

[54]  G. Ehlers,et al.  Static and Dynamical Properties of the Spin-1/2 Equilateral Triangular-Lattice Antiferromagnet Ba3CoSb2O9 , 2022 .

[55]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.