Spectroscopic studies of Nd3+ doped lead tungsten tellurite glasses for the NIR emission at 1062 nm

Abstract Lead Tungsten Tellurite (LTT) glasses doped with different concentrations of Nd 3+ ions were prepared by using the melt quenching technique to study the absorption, emission and decay spectral profiles with an aim to understand the lasing potentialities of these glasses. From the absorption spectra, the Judd–Ofelt (J–O) parameters are evaluated and in turn used to calculate the transition probability ( A R ), total transition probability ( A T ), radiative lifetime ( τ R ) and branching ratios ( β R ) for prominent emission levels of Nd 3+ . The emission spectra recorded for LTT glasses gives three emission transitions 4 F 3/2  →  4 I 9/2 , 4 F 3/2  →  4 I 11/2 and 4 F 3/2  →  4 I 13/2 for which effective band widths (Δ λ P ) and stimulated emission cross-sections ( σ se ) are evaluated. Branching ratios ( β R ) measured for all the LTT glasses show that 4 F 3/2  →  4 I 11/2 transition is quite suitable for lasing applications. The intensity of emission spectra increases with increase in the concentrations of Nd 3+ up to 1.0 mol% and beyond concentration quenching is observed. Relatively higher emission cross-sections and branching ratios observed for the present LTT glasses over the reported glasses suggests the feasibility of using LTT glasses for infrared laser applications. From the absorption, emission and decay spectral measurements, it was found that 1.0 mol% of Nd 3+ ion concentration is aptly suitable for LTT glasses to give a strong NIR laser emission at 1062 nm.

[1]  V. Anjos,et al.  Influence of crystal field potential on the spectroscopic parameters of SiO2·B2O3·PbO glass doped with Nd2O3 , 2011 .

[2]  G. Hungerford,et al.  Lasing transition (4F3/2→4I11/2) at 1.06 μm in neodymium oxide doped lithium boro tellurite glass , 2010 .

[3]  Jack H. Campbell,et al.  Nonradiative Energy Losses and Radiation Trapping in Neodymium‐Doped Phosphate Laser Glasses , 2004 .

[4]  Ramakrishna,et al.  Effect of host glass on the optical absorption properties of Nd3+, Sm3+, and Dy3+ in lead borate glasses. , 1996, Physical review. B, Condensed matter.

[5]  L. Smentek,et al.  New parametrization of spectra of Nd3+ and Sm3+ in glasses , 2008 .

[6]  C. K. Jayasankar,et al.  Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinc tellurite glasses , 2010 .

[7]  Renata Reisfeld,et al.  Judd-Ofelt parameters and chemical bonding☆ , 1983 .

[8]  M. A. Arriandiaga,et al.  Spectroscopy and frequency upconversion in Nd3+-doped TeO2–TiO2–Nb2O5 glass , 2007 .

[9]  T. Sasikala,et al.  Visible fluorescence characteristics of Dy3+ doped zinc alumino bismuth borate glasses for optoelectronic devices , 2013 .

[10]  R. Philip,et al.  Optical and non-linear optical properties of Nd3+-doped heavy metal borate glasses , 2005 .

[11]  M. Poulain,et al.  Preparation and optical properties of neodymium fluorozirconate glasses , 1978 .

[12]  L. R. Moorthy,et al.  An investigation of the optical properties of Nd3+ ions in alkali tellurofluorophosphate glasses , 2007 .

[13]  Stefano Taccheo,et al.  The enhanced two micron emission in thulium doped tellurite glasses , 2013 .

[14]  K. Rajnak,et al.  Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+ , 1968 .

[15]  Y. Gandhi,et al.  Influence of WO3 on some physical properties of MO–Sb2O3–B2O3 (M = Ca, Pb and Zn) glass system , 2009 .

[16]  L. R. Moorthy,et al.  Visible luminescence characteristics of Sm3+ doped Zinc Alumino Bismuth Borate glasses , 2014 .

[17]  Yujing Chen,et al.  Effect of Nd3+ on the Spectroscopic Properties of Bismuth Borate Glasses , 2004 .

[18]  E. Fargin,et al.  Second harmonic generation of thermally poled tungsten tellurite glass , 2009 .

[19]  C. K. Jayasankar,et al.  Structural, optical absorption and luminescence properties of Nd3+ ions in NaO-NaF borate glasses , 2010 .

[20]  G. Prakash,et al.  Lasing potentialities and white light generation capabilities of Dy3+ doped oxy-fluoroborate glasses , 2014 .

[21]  F. C. Cassanjes,et al.  Crystallization of monoclinic WO3 in tungstate fluorophosphate glasses , 2009 .

[22]  R. Balda,et al.  Laser action and upconversion of Nd3+ in tellurite bulk glass , 2007 .

[23]  G. Prakash,et al.  Fluorescence properties of Eu3+ doped lead bearing fluoro-chloro phosphate glasses , 1999 .

[24]  Y. Saddeek Effect of B2O3 on the structure and properties of tungsten–tellurite glasses , 2009 .

[25]  Koerner,et al.  Improved variables for measuring the Lambda b polarization. , 1996, Physical review. D, Particles and fields.

[26]  G. Prakash,et al.  Spectral characterisation of Sm3+ ions doped Oxy-fluoroborate glasses for visible orange luminescent applications , 2014 .

[27]  Federico Pirzio,et al.  Compact sub-100-fs Nd:silicate laser , 2009 .

[28]  H. M. Crosswhite,et al.  Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF , 1978 .

[29]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[30]  Animesh Jha,et al.  Tungsten–tellurite—a host glass for broadband EDFA , 2002 .

[31]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[32]  Animesh Jha,et al.  Rare-earth ion doped TeO2 and GeO2 glasses as laser materials , 2012 .

[33]  B. C. Jamalaiah,et al.  Investigation on 1.07 μm laser emission in Nd3+-doped sodium fluoroborate glasses , 2012 .

[34]  Stefano Taccheo,et al.  Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses , 2009 .

[35]  G. Rossetto,et al.  Structural and morphological analyses of tungsten oxide nanophasic thin films obtained by MOCVD , 2003 .

[36]  G. El-Damrawi Transport Behavior of PbO–PbF2–TeO2 Glasses , 2000 .

[37]  M. Ferrari,et al.  Thermal stability and spectroscopic properties of erbium-doped niobic-tungsten–tellurite glasses for laser and amplifier devices , 2012 .

[38]  R. Saroyan,et al.  Optical properties of Nd3+ in metaphosphate glasses , 1981 .

[39]  S. Taccheo,et al.  The effect of ZnF2 on the near-infrared luminescence from thulium doped tellurite glasses , 2012 .

[40]  L. R. Moorthy,et al.  Spectroscopic properties and luminescence behavior of Nd3+ doped zinc alumino bismuth borate glasses , 2013 .

[41]  Shiling Li,et al.  Single-mode waveguides generated in Nd3+-doped silicate glass by nickel ion irradiation , 2013 .

[42]  J. Wasylak,et al.  Optical properties of Nd3+ and Er3+ ions in TeO2−WO3−PbO−La2O3 glasses , 2012 .

[43]  N. Veeraiah,et al.  Spectral and fluorescent kinetics features of Nd3+ ion in Nb2O5, Ta2O5 and La2O3 mixed lithium zirconium silicate glasses. , 2011, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[44]  Y. N. Ahammed,et al.  Spectroscopic studies of Nd3+-doped alkali fluoroborophosphate glasses , 1998 .

[45]  S. Sailaja,et al.  Judd–Ofelt analysis and photoluminescence properties of RE3+ (RE = Er & Nd): Cadmium lithium boro tellurite glasses , 2013 .

[46]  G. Prakash,et al.  Tb3+ doped Zinc Alumino Bismuth Borate glasses for green emitting luminescent devices , 2014 .

[47]  Tayyab I. Suratwala,et al.  Nd-doped phosphate glasses for high-energy/high-peak-power lasers , 2000 .

[48]  M. Baesso,et al.  Spectroscopic properties of water free Nd2O3-doped low silica calcium aluminosilicate glasses , 2000 .

[49]  Hrvoje Gebavi,et al.  Preparation and characterization of new fluorotellurite glasses for photonics application , 2009 .

[50]  Takenobu Suzuki,et al.  Quantum efficiency measurements on Nd-doped glasses for solar pumped lasers , 2010 .

[51]  B. C. Jamalaiah,et al.  Structural and luminescence properties of Nd3+-doped PbO–B2O3–TiO2–AlF3 glass for 1.07μm laser applications , 2012 .

[52]  K. J. Rao,et al.  Investigations Of Glasses In The System Pbo-Pbf2 , 1984 .

[53]  B. C. Jamalaiah,et al.  Investigation on luminescence properties of Nd3+ ions in alkaline-earth titanium phosphate glasses , 2011 .

[54]  C. K. Jayasankar,et al.  Composition and concentration dependence of spectroscopic properties of Nd3+-doped tellurite and metaborate glasses , 2011 .

[55]  G. Prakash,et al.  Luminescence characterization of Eu3+ doped Zinc Alumino Bismuth Borate glasses for visible red emission applications , 2014 .

[56]  S. Tanabe,et al.  Derivation of quantum yields for visible emission transitions of Sm3+ in heavy metal tellurite glass , 2007 .

[57]  N. Vijaya,et al.  NIR fluorescence studies of Neodymium ions doped sodium fluoroborate glasses for 1.06μm laser applications. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[58]  N. Veeraiah,et al.  Study of CaO–WO3–P2O5 glass system by dielectric properties, IR spectra and differential thermal analysis , 2002 .