On a problem of R. Halin concerning infinite graphs II

For every countable, connected graph A containing no one-way infinite path the following is shown: Let G be an arbitrary graph which contains for every positive integer n a system of n disjoint graphs each isomorphic to a subdivision of A. Then G also contains infinitely many disjoint subgraphs each isomorphic to a subdivision of A. In addition, corrections of errors are given that occur unfortunately in the forerunner of the present paper.