Principles of T2*‐weighted dynamic susceptibility contrast MRI technique in brain tumor imaging

Dynamic susceptibility contrast magnetic resonance imaging (DSC‐MRI) is used to track the first pass of an exogenous, paramagnetic, nondiffusible contrast agent through brain tissue, and has emerged as a powerful tool in the characterization of brain tumor hemodynamics. DSC‐MRI parameters can be helpful in many aspects, including tumor grading, prediction of treatment response, likelihood of malignant transformation, discrimination between tumor recurrence and radiation necrosis, and differentiation between true early progression and pseudoprogression. This review aims to provide a conceptual overview of the underlying principles of DSC‐MRI of the brain for clinical neuroradiologists, scientists, or students wishing to improve their understanding of the technical aspects, pitfalls, and controversies of DSC perfusion MRI of the brain. Future consensus on image acquisition parameters and postprocessing of DSC‐MRI will most likely allow this technique to be evaluated and used in high‐quality multicenter studies and ultimately help guide clinical care. J. Magn. Reson. Imaging 2015;41:296–313.© 2013 Wiley Periodicals, Inc.

[1]  K. Schmainda Perfusion Imaging for Brain Tumor Characterization and Assessment of Treatment Response , 2016 .

[2]  F. Calamante Arterial input function in perfusion MRI: a comprehensive review. , 2013, Progress in nuclear magnetic resonance spectroscopy.

[3]  Fernando Calamante,et al.  The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI , 2013, NMR in biomedicine.

[4]  J. Boxerman,et al.  The Effect of Pulse Sequence Parameters and Contrast Agent Dose on Percentage Signal Recovery in DSC-MRI: Implications for Clinical Applications , 2013, American Journal of Neuroradiology.

[5]  W. Rooney,et al.  Pseudoprogression of glioblastoma after chemo- and radiation therapy: diagnosis by using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival. , 2013, Radiology.

[6]  Max Wintermark,et al.  Perfusion MRI: the five most frequently asked clinical questions. , 2013, AJR. American journal of roentgenology.

[7]  M. Essig,et al.  Perfusion MRI: the five most frequently asked technical questions. , 2013, AJR. American journal of roentgenology.

[8]  Peter Reimer,et al.  Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines , 2013, European Radiology.

[9]  V. Runge,et al.  MRI contrast agents: Basic chemistry and safety , 2012, Journal of magnetic resonance imaging : JMRI.

[10]  Namkug Kim,et al.  Percent change of perfusion skewness and kurtosis: a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas. , 2012, Radiology.

[11]  G. Zaharchuk,et al.  Combined spin‐ and gradient‐echo perfusion‐weighted imaging , 2012, Magnetic resonance in medicine.

[12]  J. Boxerman,et al.  The Role of Preload and Leakage Correction in Gadolinium-Based Cerebral Blood Volume Estimation Determined by Comparison with MION as a Criterion Standard , 2012, American Journal of Neuroradiology.

[13]  Andrew G Webb,et al.  Evaluation of signal formation in local arterial input function measurements of dynamic susceptibility contrast MRI , 2012, Magnetic resonance in medicine.

[14]  J. Wardlaw,et al.  Systematic Review of Perfusion Imaging With Computed Tomography and Magnetic Resonance in Acute Ischemic Stroke: Heterogeneity of Acquisition and Postprocessing Parameters A Translational Medicine Research Collaboration Multicentre Acute Stroke Imaging Study , 2012, Stroke.

[15]  J. Burdette,et al.  Does MR Perfusion Imaging Impact Management Decisions for Patients with Brain Tumors? A Prospective Study , 2011, American Journal of Neuroradiology.

[16]  Xin Li,et al.  Improved perfusion MR imaging assessment of intracerebral tumor blood volume and antiangiogenic therapy efficacy in a rat model with ferumoxytol. , 2011, Radiology.

[17]  T. Hirai,et al.  Quantitative Blood Flow Measurements in Gliomas Using Arterial Spin-Labeling at 3T: Intermodality Agreement and Inter- and Intraobserver Reproducibility Study , 2011, American Journal of Neuroradiology.

[18]  Glyn Johnson,et al.  An improved model for describing the contrast bolus in perfusion MRI. , 2011, Medical physics.

[19]  Dong Liang,et al.  Pharmacokinetics and magnetic resonance imaging of biodegradable macromolecular blood-pool contrast agent PG-Gd in non-human primates: a pilot study. , 2011, Contrast media & molecular imaging.

[20]  Kenneth K. Kwong,et al.  Early time points perfusion imaging: Theoretical analysis of correction factors for relative cerebral blood flow estimation given local arterial input function , 2011, NeuroImage.

[21]  Alan Connelly,et al.  Validating a Local Arterial Input Function Method for Improved Perfusion Quantification in Stroke , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[22]  Wen-Chau Wu,et al.  Pseudocontinuous arterial spin labeling perfusion magnetic resonance imaging—A normative study of reproducibility in the human brain , 2011, NeuroImage.

[23]  S Ekholm,et al.  Percentage Signal Recovery Derived from MR Dynamic Susceptibility Contrast Imaging Is Useful to Differentiate Common Enhancing Malignant Lesions of the Brain , 2011, American Journal of Neuroradiology.

[24]  Yufen Chen,et al.  Test–retest reliability of arterial spin labeling with common labeling strategies , 2011, Journal of magnetic resonance imaging : JMRI.

[25]  A Gregory Sorensen,et al.  Diffusion and diffusion tensor imaging in brain cancer. , 2011, Seminars in radiation oncology.

[26]  D. Kong,et al.  Diagnostic Dilemma of Pseudoprogression in the Treatment of Newly Diagnosed Glioblastomas: The Role of Assessing Relative Cerebral Blood Flow Volume and Oxygen-6-Methylguanine-DNA Methyltransferase Promoter Methylation Status , 2011, American Journal of Neuroradiology.

[27]  William D Rooney,et al.  Potential for differentiation of pseudoprogression from true tumor progression with dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging using ferumoxytol vs. gadoteridol: a pilot study. , 2011, International journal of radiation oncology, biology, physics.

[28]  C. Zee,et al.  Perfusion and Permeability MR Imaging of Gliomas , 2011, Technology in cancer research & treatment.

[29]  Marilyn Albert,et al.  Reliability and reproducibility of perfusion MRI in cognitively normal subjects. , 2010, Magnetic resonance imaging.

[30]  E. Melhem,et al.  Dynamic susceptibility contrast perfusion weighted imaging in grading of nonenhancing astrocytomas , 2010, Journal of magnetic resonance imaging : JMRI.

[31]  K. Schmainda,et al.  Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter‐ and intrapatient comparisons , 2010, Magnetic resonance in medicine.

[32]  A. Jackson,et al.  Imaging of brain tumors: perfusion/permeability. , 2010, Neuroimaging clinics of North America.

[33]  Andrew G Webb,et al.  Phase‐based arterial input function measurements for dynamic susceptibility contrast MRI , 2010, Magnetic resonance in medicine.

[34]  David C. Alsop,et al.  Volumetric cerebral perfusion imaging in healthy adults: Regional distribution, laterality, and repeatability of pulsed continuous arterial spin labeling (PCASL) , 2010, Psychiatry Research: Neuroimaging.

[35]  Matus Straka,et al.  Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow , 2010, Magnetic resonance in medicine.

[36]  L. Astrakas,et al.  Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping , 2010, Pediatric Radiology.

[37]  Timothy D Johnson,et al.  Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[38]  F. Calamante Perfusion MRI Using Dynamic-Susceptibility Contrast MRI: Quantification Issues in Patient Studies , 2010, Topics in magnetic resonance imaging : TMRI.

[39]  Gaohong Wu,et al.  Reliability and precision of pseudo‐continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O‐water PET in elderly subjects at risk for Alzheimer's disease , 2010, NMR in biomedicine.

[40]  Atle Bjørnerud,et al.  A Fully Automated Method for Quantitative Cerebral Hemodynamic Analysis Using DSC–MRI , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[41]  J. Debbins,et al.  Optimized Preload Leakage-Correction Methods to Improve the Diagnostic Accuracy of Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging in Posttreatment Gliomas , 2010, American Journal of Neuroradiology.

[42]  Kim Mouridsen,et al.  The QUASAR reproducibility study, Part II: Results from a multi-center Arterial Spin Labeling test–retest study , 2010, NeuroImage.

[43]  M. Endo,et al.  Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery , 2010, Journal of Neuro-Oncology.

[44]  M. Law,et al.  Magnetic resonance perfusion and permeability imaging in brain tumors. , 2009, Neuroimaging clinics of North America.

[45]  M. Berger,et al.  Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. , 2009, Radiology.

[46]  T E Yankeelov,et al.  A theoretical framework to model DSC-MRI data acquired in the presence of contrast agent extravasation , 2009, Physics in medicine and biology.

[47]  Dorothee P. Auer,et al.  Quantitative imaging biomarkers in neuro-oncology , 2009, Nature Reviews Clinical Oncology.

[48]  H. Kauczor,et al.  Intraindividual comparison between gadopentetate dimeglumine and gadobutrol for magnetic resonance perfusion in normal brain and intracranial tumors at 3 tesla , 2009, Acta radiologica.

[49]  Joseph A Maldjian,et al.  Arterial spin-labeled MR perfusion imaging: clinical applications. , 2009, Magnetic resonance imaging clinics of North America.

[50]  Timothy D Johnson,et al.  The parametric response map is an imaging biomarker for early cancer treatment outcome , 2009, Nature Medicine.

[51]  M. van Buchem,et al.  Optimal Location for Arterial Input Function Measurements near the Middle Cerebral Artery in First-Pass Perfusion MRI , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[52]  D. Knol,et al.  Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence , 2009, Journal of Neurology.

[53]  Alan Connelly,et al.  Perfusion precision in bolus‐tracking MRI: Estimation using the wild‐bootstrap method , 2009, Magnetic resonance in medicine.

[54]  M R Segal,et al.  Distinguishing Recurrent Intra-Axial Metastatic Tumor from Radiation Necrosis Following Gamma Knife Radiosurgery Using Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging , 2008, American Journal of Neuroradiology.

[55]  Atam P. Dhawan,et al.  Principles and Advanced Methods in Medical Imaging and Image Analysis , 2008, American Journal of Neuroradiology.

[56]  Wanyong Shin,et al.  Quantification of cerebral perfusion using the "bookend technique": an evaluation in CNS tumors. , 2008, Magnetic resonance imaging.

[57]  A Gregory Sorensen,et al.  Perfusion MR imaging: moving forward. , 2008, Radiology.

[58]  K. Schmainda,et al.  Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. , 2008, Radiology.

[59]  A. Jackson,et al.  Magnetic resonance perfusion imaging in neuro-oncology , 2008, Cancer imaging : the official publication of the International Cancer Imaging Society.

[60]  A. Bjørnerud,et al.  Histogram Analysis of MR Imaging–Derived Cerebral Blood Volume Maps: Combined Glioma Grading and Identification of Low-Grade Oligodendroglial Subtypes , 2008, American Journal of Neuroradiology.

[61]  A. Waldman,et al.  Inclusion or Exclusion of Intratumoral Vessels in Relative Cerebral Blood Volume Characterization in Low-Grade Gliomas: Does It Make a Difference? , 2008, American Journal of Neuroradiology.

[62]  Geoffrey A. Donnan,et al.  Acute Stroke Imaging Research Roadmap , 2008, Stroke.

[63]  A. Waldman,et al.  Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? , 2008, Radiology.

[64]  A. Sbarbati,et al.  Tumor microvasculature observed using different contrast agents: a comparison between Gd-DTPA-Albumin and B-22956/1 in an experimental model of mammary carcinoma , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[65]  E. Russell Ritenour,et al.  Principles and Advanced Methods in Medical Imaging and Image Analysis , 2008 .

[66]  Wanyong Shin,et al.  Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: Evaluation of reproducibility and age‐ and gender‐dependence with fully automatic image postprocessing algorithm , 2007, Magnetic resonance in medicine.

[67]  G. Zaharchuk,et al.  Theoretical Basis of Hemodynamic MR Imaging Techniques to Measure Cerebral Blood Volume, Cerebral Blood Flow, and Permeability , 2007, American Journal of Neuroradiology.

[68]  Timothy P L Roberts,et al.  Neuro MR: Principles , 2007, Journal of magnetic resonance imaging : JMRI.

[69]  Roland Bammer,et al.  Perfusion mapping with multiecho multishot parallel imaging EPI , 2007, Magnetic resonance in medicine.

[70]  Michael Hermes,et al.  Reproducibility of continuous arterial spin labeling perfusion MRI after 7 weeks , 2007, Magnetic Resonance Materials in Physics, Biology and Medicine.

[71]  G Johnson,et al.  Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. , 2007, AJNR. American journal of neuroradiology.

[72]  Hamid Krim,et al.  An Independent Component Analysis Approach for Minimizing Effects of Recirculation in Dynamic Susceptibility Contrast Magnetic Resonance Imaging , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[73]  Iwao Kanno,et al.  Cerebral Vascular Mean Transit Time in Healthy Humans: A Comparative Study with PET and Dynamic Susceptibility Contrast-Enhanced MRI , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[74]  Susan M. Chang,et al.  Feasibility of dynamic susceptibility contrast perfusion MR imaging at 3T using a standard quadrature head coil and eight‐channel phased‐array coil with and without SENSE reconstruction , 2006, Journal of magnetic resonance imaging : JMRI.

[75]  Finbarr O'Sullivan,et al.  Experimental Estimates of the Constants Relating Signal Change to Contrast Concentration for Cerebral Blood Volume by T2* MRI , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[76]  Renate Grüner,et al.  Iterative blind deconvolution in magnetic resonance brain perfusion imaging , 2006, Magnetic resonance in medicine.

[77]  R M Weisskoff,et al.  Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. , 2006, AJNR. American journal of neuroradiology.

[78]  Søren Christensen,et al.  Automatic selection of arterial input function using cluster analysis , 2006, Magnetic resonance in medicine.

[79]  Renate Grüner,et al.  Magnetic resonance brain perfusion imaging with voxel‐specific arterial input functions , 2006, Journal of magnetic resonance imaging : JMRI.

[80]  Glyn Johnson,et al.  Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging--prediction of patient clinical response. , 2006, Radiology.

[81]  E. Akbudak,et al.  Arterial input functions for dynamic susceptibility contrast MRI: Requirements and signal options , 2005, Journal of magnetic resonance imaging : JMRI.

[82]  J. Mintorovitch,et al.  Comparison of Magnetic Properties of MRI Contrast Media Solutions at Different Magnetic Field Strengths , 2005, Investigative radiology.

[83]  M. Wintermark,et al.  Comparative Overview of Brain Perfusion Imaging Techniques , 2005, Journal of neuroradiology. Journal de neuroradiologie.

[84]  B. D. Ward,et al.  Improving the reliability of obtaining tumor hemodynamic parameters in the presence of contrast agent extravasation , 2005, Magnetic resonance in medicine.

[85]  Wanyong Shin,et al.  Method for improving the accuracy of quantitative cerebral perfusion imaging , 2005, Journal of magnetic resonance imaging : JMRI.

[86]  Bradford A Moffat,et al.  Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Hans H Schild,et al.  Three-dimensional dynamic susceptibility-weighted perfusion MR imaging at 3.0 T: feasibility and contrast agent dose. , 2005, Radiology.

[88]  N. Schuff,et al.  Human brain: reliability and reproducibility of pulsed arterial spin-labeling perfusion MR imaging. , 2005, Radiology.

[89]  F. Calamante Quantification of Dynamic Susceptibility Contrast T2* MRI in Oncology , 2005 .

[90]  David R Vera,et al.  Gadolinium-DTPA-dextran: a macromolecular MR blood pool contrast agent. , 2004, Academic radiology.

[91]  Tong San Koh,et al.  Assessment of perfusion by dynamic contrast-enhanced imaging using a deconvolution approach based on regression and singular value decomposition , 2004, IEEE Transactions on Medical Imaging.

[92]  Gregory S Karczmar,et al.  Estimating the arterial input function using two reference tissues in dynamic contrast‐enhanced MRI studies: Fundamental concepts and simulations , 2004, Magnetic resonance in medicine.

[93]  B. D. Ward,et al.  Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. , 2004, AJNR. American journal of neuroradiology.

[94]  L. K. Hansen,et al.  Defining a local arterial input function for perfusion MRI using independent component analysis , 2004, Magnetic resonance in medicine.

[95]  Joop A. Peters,et al.  A gadolinium(III) complex of a carboxylic-phosphorus acid derivative of diethylenetriamine covalently bound to inulin, a potential macromolecular MRI contrast agent. , 2004, Bioconjugate chemistry.

[96]  Glyn Johnson,et al.  Measuring blood volume and vascular transfer constant from dynamic, T  2* ‐weighted contrast‐enhanced MRI , 2004, Magnetic resonance in medicine.

[97]  P. Tofts,et al.  Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects , 2004, Magnetic resonance in medicine.

[98]  A. Jackson,et al.  Analysis of dynamic contrast enhanced MRI. , 2004, The British journal of radiology.

[99]  Glyn Johnson,et al.  Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. , 2003, AJNR. American journal of neuroradiology.

[100]  S. Atlas,et al.  Magnetic resonance image–guided proteomics of human glioblastoma multiforme , 2003, Journal of magnetic resonance imaging : JMRI.

[101]  Scott D Rand,et al.  The effect of brain tumor angiogenesis on the in vivo relationship between the gradient‐echo relaxation rate change (ΔR2*) and contrast agent (MION) dose , 2003, Journal of magnetic resonance imaging : JMRI.

[102]  Jeroen van der Grond,et al.  Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI , 2003, Magnetic resonance in medicine.

[103]  B. Rosen,et al.  Tracer arrival timing‐insensitive technique for estimating flow in MR perfusion‐weighted imaging using singular value decomposition with a block‐circulant deconvolution matrix , 2003, Magnetic resonance in medicine.

[104]  Pratik Mukherjee,et al.  Measurement of cerebral blood flow in chronic carotid occlusive disease: comparison of dynamic susceptibility contrast perfusion MR imaging with positron emission tomography. , 2003, AJNR. American journal of neuroradiology.

[105]  V. Haughton,et al.  Automatic calculation of the arterial input function for cerebral perfusion imaging with MR imaging. , 2003, Radiology.

[106]  M. Westphal,et al.  Cost of migration: invasion of malignant gliomas and implications for treatment. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[107]  A. Sorensen,et al.  Do highly concentrated gadolinium chelates improve MR brain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0.5 versus 1.0 mol/L gadobutrol. , 2003, Radiology.

[108]  Massimo Filippi,et al.  Diffusion-Weighted MRI , 2003 .

[109]  C. Grandin Assessment of brain perfusion with MRI: methodology and application to acute stroke , 2003, Neuroradiology.

[110]  H. Aronen,et al.  Dynamic susceptibility contrast MRI of gliomas. , 2002, Neuroimaging clinics of North America.

[111]  Timothy J Carroll,et al.  Absolute Quantification of Cerebral Blood Flow with Magnetic Resonance, Reproducibility of the Method, and Comparison with H215O Positron Emission Tomography , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[112]  Glyn Johnson,et al.  Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. , 2002, Radiology.

[113]  V. Haughton,et al.  Confounding effect of large vessels on MR perfusion images analyzed with independent component analysis. , 2002, AJNR. American journal of neuroradiology.

[114]  Narter Ari,et al.  Test‐retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge , 2002, Magnetic resonance in medicine.

[115]  Leif Østergaard,et al.  Evaluation of four postprocessing methods for determination of cerebral blood volume and mean transit time by dynamic susceptibility contrast imaging , 2002, Magnetic resonance in medicine.

[116]  Glyn Johnson,et al.  Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. , 2002, Radiology.

[117]  D G Gadian,et al.  Quantification of Perfusion Using Bolus Tracking Magnetic Resonance Imaging in Stroke: Assumptions, Limitations, and Potential Implications for Clinical Use , 2002, Stroke.

[118]  D. Gadian,et al.  Is quantification of bolus tracking MRI reliable without deconvolution? , 2002, Magnetic resonance in medicine.

[119]  P. Permi A spin-state-selective experiment for measuring heteronuclear one-bond and homonuclear two-bond couplings from an HSQC-type spectrum , 2002, Journal of biomolecular NMR.

[120]  S. Trattnig [3 Tesla magnetic resonance tomography--clinical applications]. , 2002, Wiener medizinische Wochenschrift. Supplement.

[121]  M. Shinohara,et al.  Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging. , 2001, Physics in medicine and biology.

[122]  W. Lin,et al.  Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: A PET and MR study , 2001, Journal of magnetic resonance imaging : JMRI.

[123]  V. Kiselev On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI , 2001, Magnetic resonance in medicine.

[124]  I. Wilkinson,et al.  Brain MR perfusion imaging in humans: Advantages of high-molarity gadolinium chelates , 2001 .

[125]  I. Wilkinson,et al.  Brain MR perfusion imaging in humans. , 2001, Acta radiologica.

[126]  A. Jackson,et al.  Reproducibility of T2* blood volume and vascular tortuosity maps in cerebral gliomas , 2001, Journal of magnetic resonance imaging : JMRI.

[127]  Y Yonekura,et al.  Blood volume of gliomas determined by double-echo dynamic perfusion-weighted MR imaging: a preliminary study. , 2001, AJNR. American journal of neuroradiology.

[128]  M. Takahashi,et al.  Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. , 2001, AJNR. American journal of neuroradiology.

[129]  P F Renshaw,et al.  Test–retest reliability of DSC MRI CBV mapping in healthy volunteers , 2001, Neuroreport.

[130]  M. Lev,et al.  Dynamic contrast-enhanced brain perfusion imaging: technique and clinical applications. , 2000, Seminars in ultrasound, CT, and MR.

[131]  K Scheffler,et al.  Analysis of input functions from different arterial branches with gamma variate functions and cluster analysis for quantitative blood volume measurements. , 2000, Magnetic resonance imaging.

[132]  O Speck,et al.  Perfusion MRI of the human brain with dynamic susceptibility contrast: Gradient‐echo versus spin‐echo techniques , 2000, Journal of magnetic resonance imaging : JMRI.

[133]  C B Grandin,et al.  Whole brain quantitative CBF, CBV, and MTT measurements using MRI bolus tracking: Implementation and application to data acquired from hyperacute stroke patients , 2000, Journal of magnetic resonance imaging : JMRI.

[134]  M Wannenmacher,et al.  Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. , 2000, International journal of radiation oncology, biology, physics.

[135]  J. Petrella,et al.  MR perfusion imaging of the brain: techniques and applications. , 2000, AJR. American journal of roentgenology.

[136]  N. Chuang,et al.  Neuroimaging: do we really need new contrast agents for MRI? , 2000, European journal of radiology.

[137]  M A Viergever,et al.  Simultaneous quantitative cerebral perfusion and Gd‐DTPA extravasation measurement with dual‐echo dynamic susceptibility contrast MRI , 2000, Magnetic resonance in medicine.

[138]  A P Pathak,et al.  Utility of simultaneously acquired gradient‐echo and spin‐echo cerebral blood volume and morphology maps in brain tumor patients , 2000, Magnetic resonance in medicine.

[139]  A. Jackson,et al.  Abnormalities of the contrast re‐circulation phase in cerebral tumors demonstrated using dynamic susceptibility contrast‐enhanced imaging: A possible marker of vascular tortuosity , 2000, Journal of magnetic resonance imaging : JMRI.

[140]  Jayaram K. Udupa,et al.  New variants of a method of MRI scale standardization , 2000, IEEE Transactions on Medical Imaging.

[141]  L G Nyúl,et al.  On standardizing the MR image intensity scale , 1999, Magnetic resonance in medicine.

[142]  David L. Thomas,et al.  Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[143]  Jianfeng Gao,et al.  Cerebral blood flow measurement by dynamic contrast MRI using singular value decomposition with an adaptive threshold , 1999, Magnetic resonance in medicine.

[144]  S. Posse,et al.  Analytical model of susceptibility‐induced MR signal dephasing: Effect of diffusion in a microvascular network , 1999, Magnetic resonance in medicine.

[145]  Leif Østergaard,et al.  CBF and CBV measurements by USPIO bolus tracking: Reproducibility and comparison with Gd‐based values , 1999, Journal of magnetic resonance imaging : JMRI.

[146]  P. Johannsen,et al.  Cerebral Blood Flow Measurements by Magnetic Resonance Imaging Bolus Tracking: Comparison with [15O]H2O Positron Emission Tomography in Humans , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[147]  T. Benner,et al.  Perfusion‐weighted MRI using gadobutrol as a contrast agent in a rat stroke model , 1997, Journal of magnetic resonance imaging : JMRI.

[148]  Supun Samarasekera,et al.  Multiple sclerosis lesion quantification using fuzzy-connectedness principles , 1997, IEEE Transactions on Medical Imaging.

[149]  B. Rosen,et al.  Signal‐to‐noise analysis of cerebral blood volume maps from dynamic NMR imaging studies , 1997, Journal of magnetic resonance imaging : JMRI.

[150]  B. Rosen,et al.  Contrast‐to‐noise ratio in functional MRI of relative cerebral blood volume with sprodiamide injection , 1997, Journal of magnetic resonance imaging : JMRI.

[151]  B. Rosen,et al.  Contrast agents in functional MR imaging , 1997, Journal of magnetic resonance imaging : JMRI.

[152]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results , 1996, Magnetic resonance in medicine.

[153]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis , 1996, Magnetic resonance in medicine.

[154]  R. Felix,et al.  Comparison of gadolinium-DTPA and macromolecular gadolinium-DTPA-polylysine for contrast-enhanced pulmonary time-of-flight magnetic resonance angiography. , 1996, Investigative radiology.

[155]  P. Renshaw,et al.  Sequential dynamic susceptibility contrast MR experiments in human brain: Residual contrast agent effect, steady state, and hemodynamic perturbation , 1995, Magnetic resonance in medicine.

[156]  B R Rosen,et al.  Mr contrast due to intravascular magnetic susceptibility perturbations , 1995, Magnetic resonance in medicine.

[157]  W. J. Lorenz,et al.  Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. , 1994, Radiology.

[158]  E. Haacke,et al.  Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime , 1994, Magnetic resonance in medicine.

[159]  B. Rosen,et al.  Microscopic susceptibility variation and transverse relaxation: Theory and experiment , 1994, Magnetic resonance in medicine.

[160]  E F Halpern,et al.  Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. , 1994, Radiology.

[161]  T Kubota,et al.  Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. , 1993, Radiology.

[162]  L O Hall,et al.  Review of MR image segmentation techniques using pattern recognition. , 1993, Medical physics.

[163]  B. Rosen,et al.  Pitfalls in MR measurement of tissue blood flow with intravascular tracers: Which mean transit time? , 1993, Magnetic resonance in medicine.

[164]  V. Runge,et al.  Assessment of cerebral perfusion by first-pass, dynamic, contrast-enhanced, steady-state free-precession MR imaging: an animal study. , 1993, AJR. American journal of roentgenology.

[165]  R. Kikinis,et al.  Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging , 1992, Journal of magnetic resonance imaging : JMRI.

[166]  Mark S. Cohen,et al.  Contrast agents and cerebral hemodynamics , 1991, Magnetic resonance in medicine.

[167]  B. Rosen,et al.  MR Contrast Due to Microscopically Heterogeneous Magnetic Susceptibility: Numerical Simulations and Applications to Cerebral Physiology , 1991, Magnetic resonance in medicine.

[168]  R R Edelman,et al.  Cerebral blood flow: assessment with dynamic contrast-enhanced T2*-weighted MR imaging at 1.5 T. , 1990, Radiology.

[169]  J W Belliveau,et al.  Functional cerebral imaging by susceptibility‐contrast NMR , 1990, Magnetic resonance in medicine.

[170]  B. Rosen,et al.  Perfusion imaging with NMR contrast agents , 1990, Magnetic resonance in medicine.

[171]  D Chien,et al.  Perfusion imaging by nuclear magnetic resonance. , 1989, Magnetic resonance quarterly.

[172]  J C Gore,et al.  Regional differences in rat brain displayed by fast MRI with superparamagnetic contrast agents. , 1988, Magnetic resonance imaging.

[173]  B. Rosen,et al.  Dynamic imaging with lanthanide chelates in normal brain: Contrast due to magnetic susceptibility effects , 1988, Magnetic resonance in medicine.

[174]  A. Todd-Pokropek Estimating Blood Flow by Deconvolution of the Injection of Radioisotope Tracers , 1988 .

[175]  S. H. Koenig,et al.  Transverse relaxation of solvent protons induced by magnetized spheres: Application to ferritin, erythrocytes, and magnetite , 1987, Magnetic resonance in medicine.

[176]  N. Lassen,et al.  Tracer kinetic methods in medical physiology , 1979 .

[177]  T. Farrar Chapter 4 – Relaxation Mechanisms , 1971 .

[178]  K. Zierler,et al.  On the theory of the indicator-dilution method for measurement of blood flow and volume. , 1954, Journal of applied physiology.