2D QSAR of PPARγ agonist binding and transactivation

Abstract Multilinear QSAR models are developed for the largest and most diverse set of PPARγ agonists treated hitherto. Binding of these small molecules to the human nuclear receptor PPARγ is described by models that are built on simple 2D molecular descriptors and nevertheless are of good quality and predictive power (e.g., 144 compounds, 10 descriptors, r 2  = 0.79, r cv 2 = 0.76 ). The models presented are thoroughly validated by crossvalidation, randomization experiments, bootstrapping, and training set/test set partitioning. They may therefore be helpful in the design of new antidiabetic drug candidates. For gene transactivation, the functional activity of the agonists, a corresponding model for a similarly diverse compound set is of somewhat lower statistical quality.

[1]  T. Willson,et al.  Identification of a series of oxadiazole-substituted α-isopropoxy phenylpropanoic acids with activity on PPARα, PPARγ, and PPARδ , 2001 .

[2]  B. Henke Peroxisome proliferator-activated receptor alpha/gamma dual agonists for the treatment of type 2 diabetes. , 2004, Journal of medicinal chemistry.

[3]  S. Blanchard,et al.  Development of a scintillation proximity assay for peroxisome proliferator-activated receptor gamma ligand binding domain. , 1998, Analytical biochemistry.

[4]  K. Moulder,et al.  Sulfated Glycans Stimulate Endocytosis of the Cellular Isoform of the Prion Protein, PrPC, in Cultured Cells (*) , 1995, The Journal of Biological Chemistry.

[5]  J. Topliss,et al.  Chance factors in studies of quantitative structure-activity relationships. , 1979, Journal of medicinal chemistry.

[6]  Minghan Wang,et al.  Modulation of PPARγ activity with pharmaceutical agents: Treatment of insulin resistance and atherosclerosis , 2003, Journal of cellular biochemistry.

[7]  P. Seybold,et al.  Synergistic interactions among QSAR descriptors , 2004 .

[8]  T. Willson,et al.  Solid-phase synthesis of hybrid thiazolidinedione-fatty acid PPARγ ligands , 1997 .

[9]  T. Willson,et al.  Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ , 1998, Nature.

[10]  L. Hall,et al.  Molecular Structure Description: The Electrotopological State , 1999 .

[11]  Douglas M. Hawkins,et al.  The Problem of Overfitting , 2004, J. Chem. Inf. Model..

[12]  Jifeng Zhang,et al.  Nitrolinoleic acid: An endogenous peroxisome proliferator-activated receptor γ ligand , 2005 .

[13]  P. Bharatam,et al.  Additivity of Molecular Fields: CoMFA Study on Dual Activators of PPARα and PPARγ , 2005 .

[14]  Mati Karelson,et al.  QSPR of 3-aryloxazolidin-2-one antibacterials. , 2004, Bioorganic & medicinal chemistry.

[15]  J. Schwabe,et al.  A dynamic mechanism of nuclear receptor activation and its perturbation in a human disease , 2003, Nature Structural Biology.

[16]  Iterative size-exclusion chromatography coupled with liquid chromatographic mass spectrometry to enrich and identify tight-binding ligands from complex mixtures , 1999 .

[17]  M. Lazar,et al.  Peroxisome proliferator-activated receptor γ in diabetes and metabolism , 2004 .

[18]  Han van de Waterbeemd,et al.  Chemometric methods in molecular design , 1995 .

[19]  Douglas M. Hawkins,et al.  Assessing Model Fit by Cross-Validation , 2003, J. Chem. Inf. Comput. Sci..

[20]  P. Charifson,et al.  N-(2-Benzoylphenyl)-L-tyrosine PPARgamma agonists. 3. Structure-activity relationship and optimization of the N-aryl substituent. , 1998, Journal of medicinal chemistry.

[21]  Jürgen Bajorath,et al.  Accurate Partitioning of Compounds Belonging to Diverse Activity Classes , 2002, J. Chem. Inf. Comput. Sci..

[22]  Milan Randic,et al.  On Characterization of Chemical Structure , 1997, J. Chem. Inf. Comput. Sci..

[23]  Paola Gramatica,et al.  The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models , 2003 .

[24]  S. G. Kaskhedikar,et al.  QSAR Analysis of 5-Substituted-2-Benzoyl-aminobenzoic acids as PPAR Modulator , 2004 .

[25]  T. Willson,et al.  The PPARs: from orphan receptors to drug discovery. , 2000, Journal of medicinal chemistry.

[26]  David W. Salt,et al.  Variable Selection—Spoilt for Choice? , 2005 .

[27]  Steven G. Blanchard,et al.  Synthesis and biological activity of a novel series of indole-derived PPARγ agonists , 1999 .

[28]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.

[29]  Knut Baumann,et al.  Validation tools for variable subset regression , 2004, J. Comput. Aided Mol. Des..

[30]  J. Lehmann,et al.  N-(2-Benzoylphenyl)-L-tyrosine PPARgamma agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. , 1998, Journal of medicinal chemistry.

[31]  A. Dixit,et al.  Pharmacophore identification and 3D-QSAR studies in N-(2-benzoyl phenyl)-L-tyrosines as PPAR gamma agonists. , 2004, Bioorganic & medicinal chemistry.

[32]  Milan Randic,et al.  Orthogonal molecular descriptors , 1991 .

[33]  J. Lehmann,et al.  An Antidiabetic Thiazolidinedione Is a High Affinity Ligand for Peroxisome Proliferator-activated Receptor γ (PPARγ) (*) , 1995, The Journal of Biological Chemistry.

[34]  J. Lehmann,et al.  Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. , 2000, Molecular cell.

[35]  D. E. Patterson,et al.  Crossvalidation, Bootstrapping, and Partial Least Squares Compared with Multiple Regression in Conventional QSAR Studies , 1988 .

[36]  J. Topliss,et al.  Chance correlations in structure-activity studies using multiple regression analysis , 1972 .

[37]  G. Ferry,et al.  Binding of prostaglandins to human PPARgamma: tool assessment and new natural ligands. , 2001, European journal of pharmacology.

[38]  Steven G. Blanchard,et al.  Differential activity of rosiglitazone enantiomers at PPARγ , 1998 .

[39]  Millard H. Lambert,et al.  Identification of a series of PPARγ/δ dual agonists via solid-phase parallel synthesis , 2001 .

[40]  Stephen A. Smith,et al.  Non-thiazolidinedione antihyperglycaemic agents. Part 3 : The effects of stereochemistry on the potency of α-methoxy-β-phenylpropanoic acids , 1999 .

[41]  L. Moore,et al.  Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Leming Shi,et al.  Eigenvalue Analysis of Peroxisome Proliferator-Activated Receptor gamma Agonists , 2004, J. Chem. Inf. Model..

[43]  Millard H. Lambert,et al.  PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ∞ AND METABOLIC DISEASE , 2001 .

[44]  Millard H. Lambert,et al.  Asymmetry in the PPARγ/RXRα Crystal Structure Reveals the Molecular Basis of Heterodimerization among Nuclear Receptors , 2000 .

[45]  M. Yachi,et al.  Novel oximes having 5-benzyl-2,4-thiazolidinedione as antihyperglycemic agents: synthesis and structure-activity relationship. , 2000, Bioorganic & medicinal chemistry letters.

[46]  Chan Kyung Kim,et al.  Receptor-based 3D QSAR studies on PPARγ agonists using CoMFA and CoMSIA approaches , 2004 .

[47]  Adalbert Kerber,et al.  QSPR Using MOLGEN-QSPR: The Example of Haloalkane Boiling Points , 2004, J. Chem. Inf. Model..

[48]  J. Lehmann,et al.  N-(2-Benzoylphenyl)-L-tyrosine PPARgamma agonists. 2. Structure-activity relationship and optimization of the phenyl alkyl ether moiety. , 1998, Journal of medicinal chemistry.

[49]  Leming Shi,et al.  3D QSAR studies on peroxisome proliferator-activated receptor γ agonists using CoMFA and CoMSIA , 2004 .

[50]  David W Salt,et al.  Judging the significance of multiple linear regression models. , 2005, Journal of medicinal chemistry.

[51]  Kaixian Chen,et al.  Binding analyses between Human PPARgamma-LBD and ligands. , 2004, European journal of biochemistry.

[52]  Adalbert Kerber,et al.  QSPR Using MOLGEN-QSPR: The Challenge of Fluoroalkane Boiling Points , 2005, J. Chem. Inf. Model..

[53]  T. Willson,et al.  Synthesis and biological activity of L-tyrosine-based PPARgamma agonists with reduced molecular weight. , 2001, Bioorganic & medicinal chemistry letters.