A Family of ESDIRK Integration Methods

In this paper we derive and analyze the properties of explicit singly diagonal implicit Runge-Kutta (ESDIRK) integration methods. We discuss the principles for construction of Runge-Kutta methods with embedded methods of different order for error estimation and continuous extensions for discrete event location. These principles are used to derive a family of ESDIRK integration methods with error estimators and continuous-extensions. The orders of the advancing method (and error estimator) are 1(2), 2(3) and 3(4), respectively. These methods are suitable for obtaining low to medium accuracy solutions of systems of ordinary differential equations as well as index-1 differential algebraic equations. The continuous extensions facilitates solution of hybrid systems with discrete-events. Other ESDIRK methods due to Kv{\ae}rn{\o} are equipped with continuous-extensions as well to make them applicable to hybrid systems with discrete events.

[1]  G. Russo,et al.  Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .

[2]  Per Grove Thomsen,et al.  Sensitivity Analysis in Index-1 Differential Algebraic Equations by ESDIRK Methods , 2005 .

[3]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[4]  Ian T. Cameron,et al.  A new index 2 Runge-Kutta method for the simulation of batch and discontinuous processes , 2000 .

[5]  Rafiqul Gani,et al.  Adaptive Runge-Kutta algorithms for dynamic simulation , 1988 .

[6]  John C. Butcher,et al.  A new type of singly-implicit Runge-Kutta method , 2000 .

[7]  Per Grove Thomsen,et al.  Efficient sensitivity computation for nonlinear model predictive control , 2004 .

[8]  W. Marquardt,et al.  Sensitivity analysis of linearly-implicit differential-algebraic systems by one-step extrapolation , 2004 .

[9]  Gustaf Söderlind,et al.  Automatic Control and Adaptive Time-Stepping , 2002, Numerical Algorithms.

[10]  Kjell Gustafsson,et al.  Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods , 1991, TOMS.

[11]  P. I. Barton,et al.  DAEPACK: An Open Modeling Environment for Legacy Models , 2000 .

[12]  Frank Cameron A class of low order DIRK methods for a class of DAEs , 1999 .

[13]  P. G. Thomsen,et al.  Embeddedsdirk-methods of basic order three , 1984 .

[14]  Kjell Gustafsson,et al.  Control of Error and Convergence in ODE Solvers , 1992 .

[15]  Irene Bauer Numerische Verfahren zur Lösung von Anfangswertaufgaben und zur Generierung von ersten und zweiten Ableitungen mit Anwendungen bei Optimierungsaufgaben in Chemie und Verfahrenstechnik , 1999 .

[16]  L. Petzold,et al.  COOPT — a software package for optimal control of large-scale differential—algebraic equation systems , 2001 .

[17]  Ian T. Cameron,et al.  A four-stage index 2 diagonally implicit Runge-Kutta method , 2002 .

[18]  A. Kværnø,et al.  Norges Teknisk-naturvitenskapelige Universitet Singly Diagonally Implicit Runge-kutta Methods with an Explicit First Stage Singly Diagonally Implicit Runge-kutta Methods with an Explicit First Stage , 2022 .

[19]  Robert Piche,et al.  Quasi stage order conditions for SDIRK methods , 2002 .

[20]  Per Grove Thomsen,et al.  An ESDIRK method with sensitivity analysis capabilities , 2004, Comput. Chem. Eng..

[21]  E. Süli,et al.  Numerical Solution of Ordinary Differential Equations , 2021, Foundations of Space Dynamics.

[22]  P. I. Barton,et al.  Efficient sensitivity analysis of large-scale differential-algebraic systems , 1997 .

[23]  G. Wanner,et al.  Runge-Kutta methods: some historical notes , 1996 .

[24]  Philip E. Gill,et al.  An SQP method for the optimal control of large-scale dynamical systems , 2000 .

[25]  A. Prothero,et al.  On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations , 1974 .

[26]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[27]  X. Systemsofinde,et al.  Convergence of a Class of Runge-kutta Methods for Differential-algebraic Systems of Index 2 , 2005 .

[28]  Paul I. Barton,et al.  Modeling, simulation, sensitivity analysis, and optimization of hybrid systems , 2002, TOMC.

[29]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[30]  Paul I. Barton,et al.  Hidden Discontinuities and Parametric Sensitivity Calculations , 2001, SIAM J. Sci. Comput..

[31]  L. Petzold,et al.  Numerical methods and software for sensitivity analysis of differential-algebraic systems , 1986 .

[32]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[33]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[34]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[35]  Margot Gerritsen,et al.  Efficient integration of stiff kinetics with phase change detection for reactive reservoir processes , 2007 .

[36]  F. Finocchi,et al.  Chemical Reactions and Dust Destruction in Protoplanetary Accretion Disks , 1996 .

[37]  J. Butcher Coefficients for the study of Runge-Kutta integration processes , 1963, Journal of the Australian Mathematical Society.

[38]  P. G. Thomsen,et al.  Local error control inSDIRK-methods , 1986 .

[39]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[40]  Paul I. Barton,et al.  State event location in differential-algebraic models , 1996, TOMC.