New genetic drivers in hemorrhagic hereditary telangiectasia.

[1]  E. Palmero,et al.  Insights on variant analysis in silico tools for pathogenicity prediction , 2022, Frontiers in Genetics.

[2]  Liang-di Xie,et al.  Bioinformatic Exploration of Hub Genes and Potential Therapeutic Drugs for Endothelial Dysfunction in Hypoxic Pulmonary Hypertension , 2022, Computational and mathematical methods in medicine.

[3]  M. Goumans,et al.  SMAD6-deficiency in human genetic disorders , 2022, npj Genomic Medicine.

[4]  A. Berchuck,et al.  Hypoxia-induced inhibin promotes tumor growth and vascular permeability in ovarian cancers , 2022, Communications Biology.

[5]  D. Cacchiarelli,et al.  Transcriptome Analysis Reveals Altered Expression of Genes Involved in Hypoxia, Inflammation and Immune Regulation in Pdcd10-Depleted Mouse Endothelial Cells , 2022, Genes.

[6]  J. Fandrey,et al.  Altered hypoxia inducible factor regulation in hereditary haemorrhagic telangiectasia , 2022, Scientific Reports.

[7]  M. Caulfield,et al.  Whole genome sequences discriminate hereditary hemorrhagic telangiectasia phenotypes by non-HHT deleterious DNA variation , 2022, Blood advances.

[8]  E. Ashley,et al.  A guide for the diagnosis of rare and undiagnosed disease: beyond the exome , 2022, Genome medicine.

[9]  F. Viñals,et al.  Translational medicine in hereditary hemorrhagic telangiectasia. , 2021, European journal of internal medicine.

[10]  V. Bautch,et al.  SMAD6 transduces endothelial cell flow responses required for blood vessel homeostasis , 2021, Angiogenesis.

[11]  S. Ehl,et al.  Agammaglobulinemia with normal B-cell numbers in a patient lacking Bob1. , 2021, The Journal of allergy and clinical immunology.

[12]  J. Orange,et al.  Combined immunodeficiency due to a mutation in the γ1 subunit of the coat protein I complex. , 2021, The Journal of clinical investigation.

[13]  Anushya Muruganujan,et al.  The Gene Ontology resource: enriching a GOld mine , 2020, Nucleic Acids Res..

[14]  Anushya Muruganujan,et al.  PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API , 2020, Nucleic Acids Res..

[15]  Christopher G Chute,et al.  The Human Phenotype Ontology in 2021 , 2020, Nucleic Acids Res..

[16]  K. Elenitoba-Johnson,et al.  Mastermind: A Comprehensive Genomic Association Search Engine for Empirical Evidence Curation and Genetic Variant Interpretation , 2020, Frontiers in Genetics.

[17]  P. Bayrak-Toydemir,et al.  Potential Second-Hits in Hereditary Hemorrhagic Telangiectasia , 2020, Journal of clinical medicine.

[18]  K. Heimdal,et al.  Second International Guidelines for the Diagnosis and Management of Hereditary Hemorrhagic Telangiectasia , 2020, Annals of Internal Medicine.

[19]  F. Viñals,et al.  SGK1 is a signalling hub that controls protein synthesis and proliferation in endothelial cells , 2020, FEBS Letters.

[20]  N. Baena,et al.  New genes involved in Angelman syndrome-like: Expanding the genetic spectrum , 2020, bioRxiv.

[21]  A. Riera-Mestre,et al.  Gastrointestinal Bleeding in Patients with Hereditary Hemorrhagic Telangiectasia: Risk Factors and Endoscopic Findings , 2019, Journal of clinical medicine.

[22]  T. Ijuin Phosphoinositide phosphatases in cancer cell dynamics-Beyond PI3K and PTEN. , 2019, Seminars in cancer biology.

[23]  A. Figueras,et al.  PI3K (Phosphatidylinositol 3-Kinase) Activation and Endothelial Cell Proliferation in Patients with Hemorrhagic Hereditary Telangiectasia Type 1 , 2019, Cells.

[24]  D. Marchuk,et al.  Somatic Mutations in Vascular Malformations of Hereditary Hemorrhagic Telangiectasia Result in Biallelic Loss of ENG or ACVRL1 , 2019, bioRxiv.

[25]  Brendan D. O'Fallon,et al.  Phenotype of CM-AVM2 caused by variants in EPHB4: how much overlap with hereditary hemorrhagic telangiectasia (HHT)? , 2019, Genetics in Medicine.

[26]  Diana C. Chong,et al.  Developmental SMAD6 loss leads to blood vessel hemorrhage and disrupted endothelial cell junctions. , 2018, Developmental biology.

[27]  C. Shovlin,et al.  European Reference Network For Rare Vascular Diseases (VASCERN) Outcome Measures For Hereditary Haemorrhagic Telangiectasia (HHT) , 2018, Orphanet Journal of Rare Diseases.

[28]  Alexandros Kouris,et al.  VarSome: the human genomic variant search engine , 2018, bioRxiv.

[29]  B. Győrffy,et al.  Inhibin Is a Novel Paracrine Factor for Tumor Angiogenesis and Metastasis. , 2018, Cancer research.

[30]  X. Matías-Guiu,et al.  ALK1 Loss Results in Vascular Hyperplasia in Mice and Humans Through PI3K Activation , 2018, Arteriosclerosis, thrombosis, and vascular biology.

[31]  Chunlei Liu,et al.  ClinVar: improving access to variant interpretations and supporting evidence , 2017, Nucleic Acids Res..

[32]  John F. Robinson,et al.  Identification of a novel synaptic protein, TMTC3, involved in periventricular nodular heterotopia with intellectual disability and epilepsy , 2017, Human molecular genetics.

[33]  K. Miyazono,et al.  Regulation of TGF-β Family Signaling by Inhibitory Smads. , 2017, Cold Spring Harbor perspectives in biology.

[34]  P. Carmeliet,et al.  FOXO1 couples metabolic activity and growth state in the vascular endothelium , 2015, Nature.

[35]  E. Chao,et al.  Mutations in RASA1 and GDF2 identified in patients with clinical features of hereditary hemorrhagic telangiectasia , 2015, Human Genome Variation.

[36]  Bale,et al.  Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology , 2015, Genetics in Medicine.

[37]  P. Bayrak-Toydemir,et al.  Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era , 2015, Front. Genet..

[38]  S. Bailly,et al.  Emerging roles of BMP9 and BMP10 in hereditary hemorrhagic telangiectasia , 2015, Front. Genet..

[39]  Lluis Quintana-Murci,et al.  HGCS : an online tool for prioritizing disease-causing gene variants by biological distance Itan , 2017 .

[40]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[41]  Brendan D. O'Fallon,et al.  BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. , 2013, American journal of human genetics.

[42]  G. Semenza,et al.  Hypoxic retinal Müller cells promote vascular permeability by HIF-1–dependent up-regulation of angiopoietin-like 4 , 2013, Proceedings of the National Academy of Sciences.

[43]  Guillaume Vogt,et al.  The human gene connectome as a map of short cuts for morbid allele discovery , 2013, Proceedings of the National Academy of Sciences.

[44]  Pengcheng Zhu,et al.  Angiopoietin-like 4: a decade of research. , 2012, Bioscience reports.

[45]  B. Keavney,et al.  Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation , 2012, Human mutation.

[46]  C. McCulloch,et al.  Angiopoietin-Like 4 (ANGPTL4) Gene Polymorphisms and Risk of Brain Arteriovenous Malformations , 2011, Cerebrovascular Diseases.

[47]  Y. Okada,et al.  Periostin advances atherosclerotic and rheumatic cardiac valve degeneration by inducing angiogenesis and MMP production in humans and rodents. , 2010, The Journal of clinical investigation.

[48]  C. Merlo,et al.  An epistaxis severity score for hereditary hemorrhagic telangiectasia , 2010, The Laryngoscope.

[49]  Jodi B Segal,et al.  Predictive value of factor V Leiden and prothrombin G20210A in adults with venous thromboembolism and in family members of those with a mutation: a systematic review. , 2009, JAMA.

[50]  L. David,et al.  Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. , 2007, Blood.

[51]  G. Mufti,et al.  Prevalence of the activating JAK2 tyrosine kinase mutation V617F in the Budd-Chiari syndrome. , 2005, Gastroenterology.

[52]  A. Beggs,et al.  Mutations in dynamin 2 cause dominant centronuclear myopathy , 2005, Nature Genetics.

[53]  Sandra A. Moore,et al.  Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. , 2005, Cancer cell.

[54]  Peng Li,et al.  Hypoxia-responsive growth factors upregulate periostin and osteopontin expression via distinct signaling pathways in rat pulmonary arterial smooth muscle cells. , 2004, Journal of applied physiology.

[55]  A. Rustgi,et al.  A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4) , 2004, The Lancet.

[56]  I. Hampson,et al.  CD105 prevents apoptosis in hypoxic endothelial cells , 2003, Journal of Cell Science.

[57]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[58]  A. Guttmacher,et al.  Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). , 2000, American journal of medical genetics.

[59]  D. W. Johnson,et al.  Mutations in the activin receptor–like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2 , 1996, Nature Genetics.

[60]  M. Porteous,et al.  Hereditary haemorrhagic telangiectasia: a clinical analysis. , 1992, Journal of medical genetics.

[61]  A. Waggoner,et al.  Two-dimensional contrast echocardiography in the detection and follow-up of congenital pulmonary arteriovenous malformations. , 1991, The American journal of cardiology.

[62]  B. Jacobson,et al.  Ultrastructure and three-dimensional organization of the telangiectases of hereditary hemorrhagic telangiectasia. , 1990, The Journal of investigative dermatology.

[63]  A. Riera-Mestre,et al.  Medical management of haemorrhagic hereditary telangiectasia in adult patients. , 2018, Medicina clinica.

[64]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[65]  D. W. Johnson,et al.  Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1 , 1994, Nature Genetics.