An operator-based local discontinuous Galerkin method compatible with the BSSN formulation of the Einstein equations

Discontinuous Galerkin Finite Element (DGFE) methods offer a mathematically beautiful, computationally efficient, and efficiently parallelizable way to solve hyperbolic partial differential equations. These properties make them highly desirable for numerical calculations in relativistic astrophysics and many other fields. The BSSN formulation of the Einstein equations has repeatedly demonstrated its robustness. The formulation is not only stable but allows for puncture-type evolutions of black hole systems. To-date no one has been able to solve the full (3+1)-dimensional BSSN equations using DGFE methods. This is partly because DGFE discretization often occurs at the level of the equations, not the derivative operator, and partly because DGFE methods are traditionally formulated for manifestly flux-conservative systems. By discretizing the derivative operator, we generalize a particular flavor of DGFE methods, Local DG methods, to solve arbitrary second-order hyperbolic equations. Because we discretize at the level of the derivative operator, our method can be interpreted as either a DGFE method or as a finite differences stencil with non-constant coefficients.

[1]  David A. Bader,et al.  Hierarchical Data Format , 2011, Encyclopedia of Parallel Computing.

[2]  David C. Del Rey Fernández,et al.  A generalized framework for nodal first derivative summation-by-parts operators , 2014, J. Comput. Phys..

[3]  S. Husa,et al.  Implementation of standard testbeds for numerical relativity , 2007, 0709.3559.

[4]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[5]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[6]  Sander Rhebergen,et al.  A discontinuous Galerkin finite element model for river bed evolution under shallow flows , 2007 .

[7]  D. Gottlieb,et al.  A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations , 1988 .

[8]  Michael Dumbser,et al.  Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations , 2009, J. Comput. Phys..

[9]  Z. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids , 2002 .

[10]  Lawrence E. Kidder,et al.  A new generalized harmonic evolution system , 2005, gr-qc/0512093.

[11]  P. Floch Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form , 1988 .

[12]  Jinchao Xu,et al.  A toy model for testing finite element methods to simulate extreme-mass-ratio binary systems , 2005, gr-qc/0507112.

[13]  M. Norman,et al.  yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA , 2010, 1011.3514.

[14]  R D Richtmyek,et al.  Survey of the Stability of Linear Finite Difference Equations , 2022 .

[15]  Yue Hu,et al.  Model-Driven Auto-Tuning of Stencil Computations on GPUs , 2015 .

[16]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[17]  Joseph Oliger,et al.  Stability of the Fourier method , 1977 .

[18]  T. Hou,et al.  Why nonconservative schemes converge to wrong solutions: error analysis , 1994 .

[19]  Michael Dumbser,et al.  The discontinuous Galerkin method with Lax-Wendroff type time discretizations , 2005 .

[20]  S. Husa,et al.  Kranc : a Mathematica application to generate numerical codes for tensorial evolution equations , 2004 .

[21]  S. Shapiro,et al.  On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.

[22]  W. Tichy Long term black hole evolution with the BSSN system by pseudospectral methods , 2006, 0911.0973.

[23]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives , 2002, J. Sci. Comput..

[24]  Yuzhi Sun,et al.  Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow , 2006, J. Comput. Phys..

[25]  Marcel Vinokur,et al.  Spectral (finite) volume method for conservation laws on unstructured grids V: Extension to three-dimensional systems , 2006, J. Comput. Phys..

[26]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[27]  J. Duistermaat,et al.  Distributions: Theory and Applications , 2010 .

[28]  O. Scherzer,et al.  Shape spaces via medial axis transforms for segmentation of complex geometry in 3D voxel data , 2013 .

[29]  J. Dormand,et al.  High order embedded Runge-Kutta formulae , 1981 .

[30]  Nakamura,et al.  Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.

[31]  Jan S. Hesthaven,et al.  Numerical simulations with a first-order BSSN formulation of Einstein"s field equations , 2012, 1202.1038.

[32]  B. Bruegmann,et al.  Pseudospectral method for gravitational wave collapse , 2015, 1504.04732.

[33]  Sebastiano Bernuzzi,et al.  Solving 3D relativistic hydrodynamical problems with weighted essentially nonoscillatory discontinuous Galerkin methods , 2016 .

[34]  M. Holst,et al.  Solving the Einstein constraint equations on multi-block triangulations using finite element methods , 2008, 0801.1823.

[35]  Hervé Vandeven,et al.  Family of spectral filters for discontinuous problems , 1991 .

[36]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[37]  John Shalf,et al.  The Cactus Framework and Toolkit: Design and Applications , 2002, VECPAR.

[38]  J. Colombeau,et al.  A New Theory of Generalized Functions , 1986 .

[39]  Seidel,et al.  Three-dimensional numerical relativity: The evolution of black holes. , 1995, Physical review. D, Particles and fields.

[40]  Jan S. Hesthaven,et al.  Discontinuous Galerkin method for the spherically reduced Baumgarte-Shapiro-Shibata-Nakamura system with second-order operators , 2010, 1008.1820.

[41]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[42]  Sander Rhebergen,et al.  Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations , 2008, J. Comput. Phys..

[43]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[44]  I. Hinder,et al.  Constraint damping in the Z4 formulation and harmonic gauge , 2005, gr-qc/0504114.

[45]  Magnus Svärd,et al.  Review of summation-by-parts schemes for initial-boundary-value problems , 2013, J. Comput. Phys..

[46]  Yulong Xing,et al.  Energy conserving local discontinuous Galerkin methods for wave propagation problems , 2013 .

[47]  Erik Schnetter,et al.  SpECTRE: A task-based discontinuous Galerkin code for relativistic astrophysics , 2016, J. Comput. Phys..

[48]  Jian Zhao,et al.  Runge-Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics , 2013, J. Comput. Phys..

[49]  Carlos F. Sopuerta,et al.  Finite element computation of the gravitational radiation emitted by a pointlike object orbiting a nonrotating black hole , 2005, gr-qc/0512028.

[50]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[51]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[52]  J. Colombeau,et al.  Discontinuous generalized solutions of nonlinear nonconservative hyperbolic equations , 1989 .

[53]  Antony Jameson,et al.  Spectral Difference Method for Unstructured Grids II: Extension to the Euler Equations , 2007, J. Sci. Comput..

[54]  E. Tadmor,et al.  Analysis of the spectral vanishing viscosity method for periodic conservation laws , 1989 .

[55]  Miguel Alcubierre,et al.  Introduction to 3+1 Numerical Relativity , 2008 .

[56]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[57]  Marcel Vinokur,et al.  Spectral difference method for unstructured grids I: Basic formulation , 2006, J. Comput. Phys..

[58]  E. Seidel,et al.  Towards a stable numerical evolution of strongly gravitating systems in general relativity: The conformal treatments , 2000, gr-qc/0003071.

[59]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[60]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[61]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[62]  A. I. Vol'pert THE SPACES BV AND QUASILINEAR EQUATIONS , 1967 .

[63]  Daniele,et al.  CONVERGENCE RESULTS FOR PSEUDOSPECTRAL APPROXIMATIONS OF HYPERBOLIC SYSTEMS BY A PENALTY TYPE BOUNDARY TREATMENT , 1991 .

[64]  P. Floch Shock Waves for Nonlinear Hyperbolic Systems in Nonconservative Form , 1989 .

[65]  Marcus Ansorg,et al.  Single-domain spectral method for black hole puncture data , 2004 .

[66]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[67]  C. Ott,et al.  The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics , 2011, 1111.3344.

[68]  Carl De Boor,et al.  Mathematical aspects of finite elements in partial differential equations : proceedings of a symposium conducted by the Mathematics Research Center, the University of Wisconsin--Madison, April 1-3, 1974 , 1974 .

[69]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations , 2006 .

[70]  S. Schochet The rate of convergence of spectral-viscosity methods for periodic scalar conservation laws , 1990 .

[71]  Zhi J. Wang,et al.  Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems , 2004 .

[72]  E. Seidel,et al.  Gauge conditions for long-term numerical black hole evolutions without excision , 2002, gr-qc/0206072.

[73]  O. Sarbach,et al.  Hyperbolicity of the Baumgarte-Shapiro-Shibata-Nakamura system of Einstein evolution equations , 2002 .

[74]  Nicholas W. Taylor,et al.  Spectral methods for the wave equation in second-order form , 2010, 1005.2922.

[75]  Lawrence E. Kidder,et al.  High-accuracy waveforms for binary black hole inspiral, merger, and ringdown , 2008, 0810.1767.

[76]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[77]  Zhi J. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation , 2002 .

[78]  Stephen D. Bond,et al.  Generating Initial Data in General Relativity using Adaptive Finite Element Methods , 2008, 0801.3142.

[79]  Chi-Wang Shu,et al.  A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives , 2007, Math. Comput..

[80]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[81]  Zhi Jian Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids III: One Dimensional Systems and Partition Optimization , 2004, J. Sci. Comput..

[82]  Christiane Lechner,et al.  Kranc: a Mathematica package to generate numerical codes for tensorial evolution equations , 2006, Comput. Phys. Commun..

[83]  Gerhard Zumbusch,et al.  Finite element, discontinuous Galerkin, and finite difference evolution schemes in spacetime , 2009, 0901.0851.

[84]  I. Toumi A weak formulation of roe's approximate riemann solver , 1992 .

[85]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[86]  Mats G. Larson,et al.  The Finite Element Method: Theory, Implementation, and Applications , 2013 .

[87]  A. Kumbaro,et al.  An Approximate Linearized Riemann Solver for a Two-Fluid Model , 1996 .

[88]  Heinz-Otto Kreiss,et al.  Methods for the approximate solution of time dependent problems , 1973 .

[89]  Carlos Parés Madroñal,et al.  Numerical methods for nonconservative hyperbolic systems: a theoretical framework , 2006, SIAM J. Numer. Anal..

[90]  David C. Del Rey Fernández,et al.  Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations , 2014 .

[91]  G. vanRossum Python reference manual , 1995 .

[92]  Eitan Tadmor,et al.  Shock capturing by the spectral viscosity method , 1990 .

[93]  A. Schneebeli Interior penalty discontinuous galerkin methods for electromagnetic and acoustic wave equations , 2006 .

[94]  Manuel Jesús Castro Díaz,et al.  High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems , 2006, Math. Comput..

[95]  David Bernstein Physics, astronomy, and astrophysics: A numerical study of the black hole plus Brill wave spacetime , 1993 .

[96]  Conformal invariance and the conformal-traceless decomposition of the gravitational field , 2005, gr-qc/0501092.

[97]  Marcus J. Grote,et al.  Discontinuous Galerkin Finite Element Method for the Wave Equation , 2006, SIAM J. Numer. Anal..

[98]  E. Gourgoulhon,et al.  Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity: 1. Method and tests , 2001 .

[99]  D. Gottlieb,et al.  The Stability of Numerical Boundary Treatments for Compact High-Order Finite-Difference Schemes , 1993 .

[100]  D. Gottlieb,et al.  Spectral methods for hyperbolic problems , 2001 .

[101]  Black hole evolution with the BSSN system by pseudospectral methods , 2006, gr-qc/0609087.

[102]  Luciano Rezzolla,et al.  Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes , 2011, 1103.2426.

[103]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[104]  Jan S. Hesthaven,et al.  Spectral penalty methods , 2000 .

[105]  J. Colombeau,et al.  New Generalized Functions and Multiplication of Distributions , 2012 .

[106]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[107]  Khosro Shahbazi,et al.  An explicit expression for the penalty parameter of the interior penalty method , 2022 .

[108]  Michael Dumbser,et al.  Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement , 2015, 1504.07458.

[109]  J. Novak,et al.  Spectral Methods for Numerical Relativity , 2007, Living reviews in relativity.

[110]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[111]  S. Nissanke,et al.  Binary-black-hole merger: symmetry and the spin expansion. , 2007, Physical review letters.

[112]  Dan Kosloff,et al.  A modified Chebyshev pseudospectral method with an O(N –1 ) time step restriction , 1993 .

[113]  D. Schötzau,et al.  Interior penalty discontinuous Galerkin method for Maxwell's equations , 2007 .

[114]  Gregor Gassner,et al.  A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods , 2013, SIAM J. Sci. Comput..

[115]  Timothy C. Warburton,et al.  Taming the CFL Number for Discontinuous Galerkin Methods on Structured Meshes , 2008, SIAM J. Numer. Anal..

[116]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[117]  Frans Pretorius,et al.  Numerical relativity using a generalized harmonic decomposition , 2005 .

[118]  Saul A. Teukolsky,et al.  Formulation of discontinuous Galerkin methods for relativistic astrophysics , 2015, J. Comput. Phys..

[119]  Yvon Maday,et al.  Polynomial interpolation results in Sobolev spaces , 1992 .

[120]  E. Schnetter,et al.  Turduckening black holes: An Analytical and computational study , 2008, 0809.3533.

[121]  Gabrielle Allen,et al.  Towards standard testbeds for numerical relativity , 2003, gr-qc/0305023.

[122]  J. Colombeau,et al.  Multiplications of distributions in elasticity and hydrodynamics , 1988 .

[123]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[124]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[125]  Harald P. Pfeiffer,et al.  A Multidomain spectral method for solving elliptic equations , 2002, gr-qc/0202096.