PREDICTING THE COEFFICIENT OF PERMEABILITY OF SOILS USING THE KOZENY-CARMAN EQUATION

Resume: La conductivite hydraulique saturee d'un sol peut etre predite par des relations empiriques, des modeles capillaires, des modeles statistiques et des theories de rayon hydraulique. Une relation bien connue entre permeabilite et proprietes des pores fut proposee par Kozeny et modifiee par Carman. L'equation resultante est largement connue sous le nom Kozeny-Carman (KC), bien que ces auteurs n'aient jamais publie ensemble. Dans la litterature geotechnique, il existe un large consensus a l'effet que l'equation de Kozeny-Carman s'applique aux sables mais pas aux argiles. Cependant, cette opinion n'est appuyee que par une demonstration partielle. Cet article examine les fondements et la validite de l'equation KC a l'aide d'essais de permeabilite en laboratoire. Les resultats d'essais proviennent de diverses publications qui ont fourni toute l'information requise pour faire une prediction : indice des vides et soit la surface specifique mesuree pour les sols coherents, soit la courbe granulometrique pour les sols pulverulents. L'article montre comment calculer la surface specifique d'un sol pulverulent a partir de sa courbe granulometrique. Les resultats presentes ici indiquent qu'en general, l'equation de Kozeny-Carman predit assez bien la conductivite hydraulique saturee de la plupart des sols. Plusieurs des divergences constatees peuvent etre reliees soit a des raisons pratiques (e.g. valeur imprecise de la surface specifique, regime permanent pas etabli, echantillons non satures, etc.) soit a des raisons theoriques (une partie de l'eau est immobile, et l'equation de prediction est isotrope alors que la conductivite hydraulique est une propriete anisotrope). Ces aspects sont discutes dans l'article en relation avec la capacite de prediction de l'equation de Kozeny-Carman. --------- Abstract: The saturated hydraulic conductivity of a soil can be predicted using empirical relationships, capillary models, statistical models and hydraulic radius theories. A well-known relationship between permeability and properties of pores was proposed by Kozeny and later modified by Carman. The resulting equation is largely known under the name of Kozeny-Carman, although these authors never published together. In the geotechnical literature, there is a large consensus that the Kozeny-Carman (KC) equation applies to sands but not to clays. Such opinion, however, is supported only by partial demonstration. This report evaluates the background and the validity of the KC equation with laboratory permeability tests. Considered test results were taken from publications that provided all information needed to make a prediction: void ratio, and either the measured specific surface for cohesive soils, or the gradation curve for non-cohesive soils. This report shows how to estimate the specific surface of a non-cohesive soil from its gradation curve. The results presented here show that, as a general rule, the KC equation predicts fairly well the saturated hydraulic conductivity of most soils. Many of the observed discrepancies can be related to either practical reasons (e.g. inaccurate specific surface value, steady flow not reached, unsaturated specimens, etc.) or theoretical reasons (some water is motionless, and the predictive equation is isotropic whereas hydraulic conductivity is an anisotropic property). Theses issues are discussed in relation to the predictive capabilities of the KC equation.

[1]  T. C. Kenney,et al.  Internal stability of granular filters , 1985 .

[2]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[3]  T. N. Lan UN NOUVEL ESSAI D'IDENTIFICATION DES SOLS - L'ESSAI AU BLEU DE METHYLENE , 1977 .

[4]  Marius Duriez,et al.  Nouveau traité de matériaux de construction , 1961 .

[5]  H. E. Hudson,et al.  FUNDAMENTAL FACTORS GOVERNING THE STREAMLINE FLOW OF WATER THROUGH SAND [with DISCUSSION] , 1933 .

[6]  J. D. Coleman,et al.  THE CORRELATION OF SURFACE AREA WITH OTHER PROPERTIES OF NINETEEN BRITISH CLAY SOILS , 1967 .

[7]  de Bruyn,et al.  The Specific Surface, Water Affinity, and Potential Expansiveness of Clays , 1957 .

[8]  Michel Aubertin,et al.  Practical pedotransfer functions for estimating the saturated hydraulic conductivity , 2002 .

[9]  J. M. Dallavalle,et al.  Fine particle measurement : size, surface, and pore volume , 1959 .

[10]  J Craus,et al.  A Method for the Determination of the Surface Area of Fine Aggregate in Bituminous Mixtures , 1977 .

[11]  J. M. Dallavalle Micromeritics : the technology of fine particles , 1948 .

[12]  Y. Watabe,et al.  Influence of compaction conditions on pore-size distribution and saturated hydraulic conductivity of a glacial till , 2000 .

[13]  H. W. Olsen Hydraulic Flow Through Saturated Clays , 1960 .

[14]  Michel Aubertin,et al.  Hydraulic conductivity of homogenized tailings from hard rock mines , 1996 .

[15]  James K. Mitchell,et al.  Permeability of Compacted Clay , 1965 .

[16]  J. L. Sherard Sinkholes in Dams of Coarse, Broadly Graded Soils (Paper introduced by Jean Lafleur) , 1992 .

[17]  S. Leroueil,et al.  The permeability of natural soft clays. Part II: Permeability characteristics: Reply , 1983 .

[18]  T. Lambe The Permeability of Fine-Grained Soils , 1955 .

[19]  Adrian E. Scheidegger,et al.  The Physics of Flow Through Porous Media (3rd Edition) , 1957 .

[20]  R. Chapuis,et al.  GRANULAR SOILS IN RIGID-WALL PERMEAMETERS: METHOD FOR DETERMINING THE DEGREE OF SATURATION , 1989 .

[21]  R. Whitman,et al.  Soil mechanics, SI version , 1969 .

[22]  D. A. Morris,et al.  Summary of hydrologic and physical properties of rock and soil materials, as analyzed by the hydrologic laboratory of the U.S. Geological Survey, 1948-60 , 1966 .

[23]  M. Gribaudo,et al.  2002 , 2001, Cell and Tissue Research.

[24]  D. Gill,et al.  Hydraulic anisotropy of homogeneous soils and rocks: influence of the densification process , 1989 .

[25]  Roy E. Olson,et al.  Mechanisms Controlling the Permeability of Clays , 1971 .

[26]  M. R. J. Wyllie,et al.  Application of Electrical Resistivity Measurements to Problem of Fluid Flow in Porous Media , 1952 .

[27]  N. S. Rad,et al.  New Procedure for Saturating Sand Specimens , 1984 .

[28]  J. Skopp,et al.  Physical and Chemical Hydrogeology, 2nd edition , 1999 .

[29]  Robert P. Chapuis,et al.  Laboratory permeability tests on sand: influence of the compaction method on anisotropy , 1989 .

[30]  B. Muhunthan Liquid limit and surface area of clays , 1991 .

[31]  P. Carman,et al.  Permeability of saturated sands, soils and clays , 1939, The Journal of Agricultural Science.

[32]  Sudhakar M. Rao,et al.  Liquid limit of kaolinitic soils , 1988 .

[33]  M. Wyllie,et al.  Application of the Kozeny Equation to Consolidated Porous Media , 1950, Nature.

[34]  Robert P. Chapuis,et al.  SAND-BENTONITE LINERS: PREDICTING PERMEABILITY FROM LABORATORY TESTS , 1990 .

[35]  Robert P. Chapuis,et al.  The 2000 R.M. Hardy Lecture: Full-scale hydraulic performance of soilbentonite and compacted clay liners , 2002 .

[36]  Y. Mualem A New Model for Predicting the Hydraulic Conductivity , 1976 .

[37]  A. Houpeurt Mécanique des fluides dans les milieux poreux , 1974 .

[38]  P. Domenico,et al.  Physical and chemical hydrogeology , 1990 .

[39]  Adrian E. Scheidegger,et al.  The physics of flow through porous media , 1957 .

[40]  W. A. Bruce,et al.  Evaluation Of Capillary Character In Petroleum Reservoir Rock , 1949 .

[41]  Alan S. Michaels,et al.  Permeability of Kaolinite , 1954 .

[42]  S. Leroueil,et al.  The permeability of natural soft clays. Part I: Methods of laboratory measurement , 1983 .

[43]  Harold W. Olsen,et al.  HYDRAULIC FLOW THROUGH SATURATED CLAYS , 1960 .

[44]  A. Alzaydi Flow of gases through porous media , 1975 .

[45]  C. M. Sangha,et al.  Observations on soil permeability, moulding moisture content and dry density relationships , 1996, Quarterly Journal of Engineering Geology.

[46]  F. Seelheim Methoden zur Bestimmung der Durchlässigkeit des Bodens , 1880 .

[47]  T. C. Kenney,et al.  Internal stability of granular filters: Reply , 1986 .

[48]  W. J. Leas,et al.  Relative Permeability to Liquid in Liquid-Gas Systems , 1951 .

[49]  David K. Black,et al.  Saturating Laboratory Samples by Back Pressure , 1973 .

[50]  R. Chapuis,et al.  A SIMPLE METHOD FOR DETERMINING THE SURFACE AREA OF FINE AGGREGATES AND FILLERS IN BITUMINOUS MIXTURES , 1992 .

[51]  Dobroslav Znidarčić,et al.  Some measurements of the permeability of kaolin , 1988 .

[52]  Sudhakar M. Rao,et al.  Liquid Limit of Montmorillonite Soils , 1986 .

[53]  Adrian E. Scheidegger,et al.  Statistical Hydrodynamics in Porous Media , 1954 .

[54]  R. Chapuis Similarity of internal stability criteria for granular soils , 1992 .

[55]  F. Dullien Porous Media: Fluid Transport and Pore Structure , 1979 .

[56]  Stephen S. Boynton,et al.  Permeability Testing with Flexible-Wall Permeameters , 1984 .

[57]  E. C. Childs Dynamics of fluids in Porous Media , 1973 .

[58]  S. Lowell,et al.  Powder surface area and porosity , 1984 .

[59]  Donald W. Taylor,et al.  Fundamentals of soil mechanics , 1948 .

[60]  P. Carman Fluid flow through granular beds , 1997 .

[61]  T. C. Johnson,et al.  Use of Back Pressure to Increase Degree of Saturation of Triaxial Test Specimens , 1960 .

[62]  T. Lambe The Engineering Behavior of Compacted Clay , 1958 .

[63]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[64]  Gérard Ballivy,et al.  Mineralogy, chemistry, and physical properties interrelationships of some sensitive clays from Eastern Canada , 1984 .