Vibration and shock isolation performance of a pressure-limited hydraulic damper

Abstract A pressure-limited hydraulic damper is proposed to achieve variable damping within a vibration isolation system. The variation in damping parameters is achieved passively by limiting the pressure differential across the damper piston, using pressure relief valves. The pressure-limited hydraulic damper is modeled as a non-linear dynamical system incorporating control valve dynamics. The significance of the pressure differential across the damper piston is discussed in view of vibration isolation, and a methodology for estimation of a suitable value of the limiting pressure is proposed. The vibration and shock isolation characteristics of the passive pressure-limited damper are investigated through computer simulation. The vibration and shock isolation performance of the proposed damper is compared to those of passive and semi-active “on-off” vibration isolators. A comparison of the simulation results reveals that the vibration and shock isolation performance of the pressure-limited damper is superior to that of a conventional passive damper, and is comparable to that of a semi-active “on-off” damper. The proposed pressure-limited damper can be realised passively and does not require the sophisticated control devices and feedback instrumentation essential for a semi-active “on-off” vibration isolation system.