Interactive local bandwidth choice

A tool for user choice of the local bandwidth function for kernel density and nonparametric regression estimates is developed using KDE, a graphical object-oriented package for interactive kernel density estimation written in LISP-STAT. The bandwidth function is a parameterized spline, whose knots are manipulated by the user in one window, while the resulting estimate appears in another window. A real data illustration of this method raises concerns, because an extremely large family of estimates is available. Suggestions are made to overcome this problem so that this tool can be used effectively for presenting final results of a data analysis.

[1]  W. Härdle Applied Nonparametric Regression , 1991 .

[2]  James Stephen Marron,et al.  An assessment of finite sample performance of adaptive methods in density estimation , 1999 .

[3]  Variable location and scale density estimation , 1994 .

[4]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[5]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[6]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[7]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .

[8]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[9]  J. Marron,et al.  Simultaneous estimation of several size distributions of income , 1988 .

[10]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[11]  I. Good,et al.  Density Estimation and Bump-Hunting by the Penalized Likelihood Method Exemplified by Scattering and Meteorite Data , 1980 .

[12]  M. Samiuddin,et al.  On nonparametric kernel density estimates , 1990 .

[13]  A. Izenman,et al.  Philatelic Mixtures and Multimodal Densities , 1988 .

[14]  C. Quesenberry,et al.  A nonparametric estimate of a multivariate density function , 1965 .

[15]  L. Breiman,et al.  Variable Kernel Estimates of Multivariate Densities , 1977 .

[16]  M. C. Jones Variable kernel density estimates and variable kernel density estimates , 1990 .

[17]  Jianqing Fan,et al.  Fast Implementations of Nonparametric Curve Estimators , 1994 .

[18]  Robert F. Sproull,et al.  Principles in interactive computer graphics , 1973 .

[19]  G. Wahba Spline models for observational data , 1990 .

[20]  Adam Krzyzak,et al.  On the Hilbert kernel density estimate , 1999 .

[21]  Luke Tierney Lisp-Stat: An Object-Oriented Environment for Statistical Computing and Dynamic Graphics , 1990 .

[22]  James D. Foley,et al.  Fundamentals of interactive computer graphics , 1982 .

[23]  Wolfgang Härdle,et al.  APPLIED NONPARAMETRIC METHODS , 1992 .

[24]  W. Härdle Applied Nonparametric Regression , 1992 .

[25]  J. Marron,et al.  Simultaneous Density Estimation of Several Income Distributions , 1992, Econometric Theory.

[26]  B. Yandell Spline smoothing and nonparametric regression , 1989 .

[27]  D. W. Scott,et al.  The Mode Tree: A Tool for Visualization of Nonparametric Density Features , 1993 .

[28]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[29]  James Stephen Marron,et al.  Transformations in Density Estimation , 1991 .

[30]  Luc Devroye,et al.  Variable Kernel Estimates: On the Impossibility of Tuning the Parameters , 1998 .