An Enzymatic Route to Selenazolines

Ringing the changes: Selenazolines have applications in medicinal chemistry, but their synthesis is challenging. We report a new convenient and less toxic route to these heterocycles that starts from commercially available selenocysteine. The new route depends on a heterocyclase enzyme that creates oxazolines and thiazolines from serines/threonines and cysteines.

[1]  K. Ramesh,et al.  A tandem one-pot aqueous phase synthesis of thiazoles/selenazoles , 2012 .

[2]  Wael E Houssen,et al.  The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain , 2012, Nature Structural &Molecular Biology.

[3]  D. Mitchell,et al.  YcaO domains utilize ATP to activate amide backbones during peptide cyclodehydrations , 2012, Nature chemical biology.

[4]  M. Koketsu,et al.  Biologically significant selenium-containing heterocycles , 2011 .

[5]  G. Chang,et al.  Design and Synthesis of Selenazole‐Containing Peptides for Cocrystallization with P‐Glycoprotein , 2011, Chembiochem : a European journal of chemical biology.

[6]  S. Withers,et al.  OGA inhibition by GlcNAc-selenazoline. , 2010, Bioorganic & medicinal chemistry.

[7]  Wu Zhong,et al.  Synthesis of a series of novel 2,4,5-trisubstituted selenazole compounds as potential PLTP inhibitors. , 2010, Bioorganic & medicinal chemistry letters.

[8]  Enrico Perspicace,et al.  One-pot synthesis of new 2,4,5-trisubstituted 1,3-thiazoles and 1,3-selenazoles , 2009 .

[9]  E. Schmidt,et al.  Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates. , 2009, Journal of the American Chemical Society.

[10]  J. Ravel,et al.  A global assembly line for cyanobactins. , 2008, Nature chemical biology.

[11]  D. Haft,et al.  Orphan SelD proteins and selenium-dependent molybdenum hydroxylases , 2008, Biology Direct.

[12]  Jacques Ravel,et al.  Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians , 2006, Nature chemical biology.

[13]  P. Long,et al.  Shotgun Cloning and Heterologous Expression of the Patellamide Gene Cluster as a Strategy to Achieving Sustained Metabolite Production , 2005, Chembiochem : a European journal of chemical biology.

[14]  J. Eisen,et al.  Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Hongwei Zhou,et al.  An Efficient Access to Selenazoline-4-Carboxylate Derivatives Incorporating Cyclopropyl Groups , 2004 .

[16]  O. Attanasi,et al.  1,2‐Diaza‐1,3‐Butadienes: A New Approach to the Synthesis of Selenoheterocycles , 2002 .

[17]  R. Leurs,et al.  AMSELAMINE, A NEW SELECTIVE HISTAMINE H2-RECEPTOR AGONIST , 1994 .

[18]  R. Jacobs,et al.  A marine natural product, patellamide D, reverses multidrug resistance in a human leukemic cell line. , 1993, Cancer letters.

[19]  R. K. Robins,et al.  Synthesis of 4-substituted 5-amino-2-(.beta.-D-ribofuranosyl)thiazoles and 4-substituted 5-amino-2-(.beta.-D-ribofuranosyl)selenazoles, and their respective conversion into 2-(.beta.-D-ribofuranosyl)thiazolo[5,4-d]pyrimidines and 2-(.beta.-D-ribofuranosyl)selenazolo[5,4-d]pyrimidines. A new synthesi , 1985 .

[20]  A. Field,et al.  Communications , 1963, The Journal of Asian Studies.

[21]  E. Cota,et al.  Extending the usability of the phasing power of diselenide bonds: SeCys SAD phasing of CsgC using a non-auxotrophic strain. , 2011, Acta crystallographica. Section D, Biological crystallography.

[22]  D. Mcnamara,et al.  A synthesis of 2‐β‐D‐ribofuranosyl‐4‐selenazolecarboxamide (selenazofurin) and certain N‐substituted amide derivatives suitable for large scale syntheses , 1986 .

[23]  R. K. Robins,et al.  Synthesis and antitumor activity of 2-beta-D-ribofuranosylselenazole-4- carboxamide and related derivatives. , 1983, Journal of medicinal chemistry.