Optimizing information using the EM algorithm in item response theory
暂无分享,去创建一个
[1] Wolfgang Jank,et al. The EM Algorithm, Its Randomized Implementation and Global Optimization: Some Challenges and Opportunities for Operations Research , 2006 .
[2] J. D. L. Torre,et al. DINA Model and Parameter Estimation: A Didactic , 2009 .
[3] C. Spearman. CORRELATIONS OF SUMS OR DIFFERENCES , 1913 .
[4] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[5] F. Baker,et al. Item response theory : parameter estimation techniques , 1993 .
[6] M. R. Novick,et al. Statistical Theories of Mental Test Scores. , 1971 .
[7] R. Hambleton,et al. Item Response Theory , 1984, The History of Educational Measurement.
[8] R. D. Bock,et al. Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .
[9] Richard J. Patz,et al. A Straightforward Approach to Markov Chain Monte Carlo Methods for Item Response Models , 1999 .
[10] Alexander Weissman. Global Convergence of the EM Algorithm for Unconstrained Latent Variable Models with Categorical Indicators , 2013, Psychometrika.
[11] C. Spearman,et al. Demonstration of Formulae for True Measurement of Correlation , 1907 .
[12] L. J. Bain,et al. Introduction to Probability and Mathematical Statistics , 1987 .
[13] Aris Spanos,et al. Probability theory and statistical inference: econometric modelling with observational data , 1999 .
[14] B. Junker,et al. Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric Item Response Theory , 2001 .
[15] T. Moon. The expectation-maximization algorithm , 1996, IEEE Signal Process. Mag..
[16] T. Minka. Expectation-Maximization as lower bound maximization , 1998 .
[17] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[18] Shie Mannor,et al. A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..
[19] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[20] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[21] R. Darrell Bock,et al. Fitting a response model forn dichotomously scored items , 1970 .
[22] Bruce L. Golden,et al. Perspectives in Operations Research , 2006 .
[23] Matthew J. Beal. Variational algorithms for approximate Bayesian inference , 2003 .
[24] Shun-ichi Amari,et al. Information geometry of the EM and em algorithms for neural networks , 1995, Neural Networks.
[25] A note on the geometric interpretation of the EM algorithm in estimating item characteristics and student abilities , 2000 .
[26] Michael R. Harwell,et al. Item Parameter Estimation Via Marginal Maximum Likelihood and an EM Algorithm: A Didactic , 1988 .
[27] R. Hambleton,et al. Item Response Theory: Principles and Applications , 1984 .
[28] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[29] G. McLachlan,et al. The EM Algorithm and Extensions: Second Edition , 2008 .
[30] Roger J.-B. Wets,et al. Statistical estimation from an optimization viewpoint , 1999, Ann. Oper. Res..
[31] Detlef Prescher,et al. A Tutorial on the Expectation-Maximization Algorithm Including Maximum-Likelihood Estimation and EM Training of Probabilistic Context-Free Grammars , 2004, ArXiv.
[32] New York Dover,et al. ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .
[33] H. Bozdogan. Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions , 1987 .
[34] R. D. Bock,et al. Marginal maximum likelihood estimation of item parameters , 1982 .
[35] L. Crocker,et al. Introduction to Classical and Modern Test Theory , 1986 .
[36] Frank B. Baker,et al. Item Response Theory : Parameter Estimation Techniques, Second Edition , 2004 .