Rodent electroretinography: Methods for extraction and interpretation of rod and cone responses

The flash electroretinogram (ERG) represents a serial ensemble of neural responses that can be used to objectively evaluate retinal function on a layer-by-layer basis. In this review, the seminal concepts of Granit are developed within the modern context to demonstrate how the ERG waveform can be decomposed to isolate the activity of individual neural populations and their circuitry. The contribution of rods and cones to the ERG waveform can be precisely defined with simple methods that yield the veridical cone response, which allows identification of rod-isolated components. This knowledge will afford an enhanced capacity to understand retinal development and ageing as well as to interpret the effects of insult, genetic manipulation and disease processes on photoreceptor and neuron-specific components. This review integrates conclusions drawn from a large body of past work and presents new data that enables the provision of detailed methodology for ERG assessment in rodents. Emphasis is placed on protocols that allow efficient acquisition of useful information for the major ERG components with minimal complexity. In particular, specific guidelines for the isolation of rod and cone contributions from the full-field ERG in rodents are provided. This is complemented with detailed and novel methodology for determining parameters that describe individual neuronal generators of rod and cone responses. The effect of stimulus energy on the kinetics of ERG response recovery and photopigment bleaching and regeneration are also discussed. The guidelines presented here are applicable to a wide range of investigations of retinal disease in rodent models.

[1]  P. Hargrave,et al.  Molecular biology of the visual pigments , 1986, Vision Research.

[2]  K. Palczewski,et al.  Mechanism of rhodopsin kinase activation. , 1991, The Journal of biological chemistry.

[3]  D. Hood,et al.  A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography , 1990, Visual Neuroscience.

[4]  S. Semple-Rowland,et al.  Cyclic light intensity threshold for retinal damage in albino rats raised under 6 lx. , 1987, Experimental eye research.

[5]  A. Vingrys,et al.  Development of receptoral responses in pigmented and albino guinea-pigs (Cavia porcellus) , 2004, Documenta Ophthalmologica.

[6]  E N Pugh,et al.  A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. , 1992, The Journal of physiology.

[7]  R. Rando Membrane phospholipids as an energy source in the operation of the visual cycle. , 1991, Biochemistry.

[8]  A. Christopoulos,et al.  Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting , 2004 .

[9]  R. Lund,et al.  Cone function studied with flicker electroretinogram during progressive retinal degeneration in RCS rats. , 2005, Experimental eye research.

[10]  L. Wachtmeister,et al.  Oscillatory potentials in the retina: what do they reveal , 1998, Progress in Retinal and Eye Research.

[11]  F. Dudek,et al.  Slow PIII component of the carp electroretinogram , 1975, The Journal of general physiology.

[12]  G. Groeneweg,et al.  Measuring oscillatory potentials: Fourier analysis , 1988, Documenta Ophthalmologica.

[13]  J. Hurley,et al.  Rhodopsin phosphorylation and its role in photoreceptor function , 1998, Vision Research.

[14]  R. Weleber The effect of age on human cone and rod ganzfeld electroretinograms. , 1981, Investigative ophthalmology & visual science.

[15]  L. Wachtmeister,et al.  The postnatal development of the oscillatory potentials of the electroretinogram II. Photopic characteristics , 1991, Acta ophthalmologica.

[16]  M. Hawlina,et al.  ON- and OFF-response of the photopic electroretinogram in relation to stimulus characteristics , 2006, Documenta Ophthalmologica.

[17]  Y. Tazawa,et al.  Spectral sensitivity of monochromatic ERG c-wave of chicken under color adaptation. , 1993, Japanese journal of ophthalmology.

[18]  Algis J. Vingrys,et al.  Fos-tau-LacZ mice expose light-activated pathways in the visual system , 2004, NeuroImage.

[19]  J. Jin,et al.  Light-dependent delay in the falling phase of the retinal rod photoresponse , 1992, Visual Neuroscience.

[20]  K. Palczewski,et al.  Ligand Channeling within a G-protein-coupled Receptor , 2003, Journal of Biological Chemistry.

[21]  D. Hood,et al.  Phototransduction in human cones measured using the a-wave of the ERG , 1995, Vision Research.

[22]  D. Tranchina,et al.  Multiple Steps of Phosphorylation of Activated Rhodopsin Can Account for the Reproducibility of Vertebrate Rod Single-photon Responses , 2003, The Journal of general physiology.

[23]  Lin Wang,et al.  Inter-ocular and inter-session reliability of the electroretinogram photopic negative response (PhNR) in non-human primates. , 2004, Experimental eye research.

[24]  F. Naarendorp,et al.  Absolute and relative sensitivity of the scotopic system of rat: Electroretinography and behavior , 2001, Visual Neuroscience.

[25]  H. Barlow Temporal and spatial summation in human vision at different background intensities , 1958, The Journal of physiology.

[26]  D. Farber,et al.  Electroretinographic evidence for altered phototransduction gain and slowed recovery from photobleaches in albino mice with a MET450 variant in RPE65. , 2003, Experimental eye research.

[27]  Gerald H. Jacobs,et al.  Behavioral measurements of rat spectral sensitivity , 1975, Vision Research.

[28]  J. Kremers The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina , 2003, Progress in Retinal and Eye Research.

[29]  H. K. Hartline,et al.  A QUANTITATIVE AND DESCRIPTIVE STUDY OF THE ELECTRIC RESPONSE TO ILLUMINATION OF THE ARTHROPOD EYE , 1928 .

[30]  P. D. Calvert,et al.  Membrane protein diffusion sets the speed of rod phototransduction , 2001, Nature.

[31]  Steven W. Smith,et al.  The Scientist and Engineer's Guide to Digital Signal Processing , 1997 .

[32]  Kenneth R. Alexander,et al.  The luminance-response function of the dark-adapted human electroretinogram , 1989, Vision Research.

[33]  P. Sieving,et al.  A proximal retinal component in the primate photopic ERG a-wave. , 1994, Investigative ophthalmology & visual science.

[34]  R. Chappell,et al.  Pharmacology of the skate electroretinogram indicates independent ON and OFF bipolar cell pathways , 1996, The Journal of general physiology.

[35]  Wixson Sk,et al.  A comparison of pentobarbital, fentanyl-droperidol, ketamine-xylazine and ketamine-diazepam anesthesia in adult male rats. , 1987 .

[36]  T. Lamb,et al.  Human cone photoreceptor responses measured by the electroretinogram a‐wave during and after exposure to intense illumination , 2000 .

[37]  J. Hurley,et al.  Multiple Phosphorylation of Rhodopsin and the In Vivo Chemistry Underlying Rod Photoreceptor Dark Adaptation , 2001, Neuron.

[38]  N. R. Bartlett,et al.  Effect of stimulus duration on electrical responses of the human retina. , 1956, Journal of the Optical Society of America.

[39]  L. Peichl,et al.  An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Granit The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve , 1933, The Journal of physiology.

[41]  N. P. Smith,et al.  The a-wave of the human electroretinogram recorded with a minimally invasive technique , 1997, Vision Research.

[42]  B. Berkowitz,et al.  Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity. , 2003, Investigative ophthalmology & visual science.

[43]  J. A. Coles,et al.  Saturation of the response to light in Limulus ventral photoreceptor. , 1979, The Journal of physiology.

[44]  J. C. Saari Biochemistry of visual pigment regeneration: the Friedenwald lecture. , 2000, Investigative ophthalmology & visual science.

[45]  O. Pomerantzeff,et al.  Retinal illuminance using a wide-angle model of the eye. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[46]  R. Miller,et al.  Extracellular K+ activity changes related to electroretinogram components. I. Amphibian (I-type) retinas , 1985, The Journal of general physiology.

[47]  S. Saszik,et al.  Rod contributions to the electroretinogram of the dark‐adapted developing zebrafish , 2001, Developmental dynamics : an official publication of the American Association of Anatomists.

[48]  R. Cone Early Receptor Potential of the Vertebrate Retina , 1964, Nature.

[49]  Bang V Bui,et al.  Selective ganglion cell functional loss in rats with experimental glaucoma. , 2004, Investigative ophthalmology & visual science.

[50]  F. Fraunfelder,et al.  Acute reversible lens opacity: caused by drugs, cold, anoxia, asphyxia, stress, death and dehydration. , 1970, Experimental eye research.

[51]  H. Ripps,et al.  The rhodopsin cycle is preserved in IRBP “knockout” mice despite abnormalities in retinal structure and function , 2000, Visual Neuroscience.

[52]  R. Barlow,et al.  Anesthesia can cause sustained hyperglycemia in C57/BL6J mice , 2005, Visual Neuroscience.

[53]  D. Sasovetz Ketamine hydrochloride: an effective general anesthetic for use in electroretinography. , 1978, Annals of ophthalmology.

[54]  D. Hood,et al.  Recovery kinetics of human rod phototransduction inferred from the two-branched alpha-wave saturation function. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[55]  M. Murakami,et al.  A New Receptor Potential of the Monkey Retina with no Detectable Latency , 1964, Nature.

[56]  B. Honig,et al.  Temperature and wavelength effects on the photochemistry of rhodopsin, isorhodopsin, bacteriorhodopsin and their photoproducts , 1977, Nature.

[57]  D. Norren,et al.  Origin of the oscillatory potentials in the primate retina , 1985, Vision Research.

[58]  L. Frishman,et al.  Origin of negative potentials in the light-adapted ERG of cat retina. , 1990, Journal of neurophysiology.

[59]  Edward N. Pugh,et al.  From candelas to photoisomerizations in the mouse eye by rhodopsin bleaching in situ and the light-rearing dependence of the major components of the mouse ERG , 2004, Vision Research.

[60]  L. Frishman,et al.  Scotopic threshold response of proximal retina in cat. , 1986, Journal of neurophysiology.

[61]  B. Jeffrey,et al.  n-3 fatty acid deficiency alters recovery of the rod photoresponse in rhesus monkeys. , 2002, Investigative ophthalmology & visual science.

[62]  D. Hood,et al.  Retinal origins of the primate multifocal ERG: implications for the human response. , 2002, Investigative ophthalmology & visual science.

[63]  D. Hood,et al.  Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation. , 1995, Investigative ophthalmology & visual science.

[64]  M. Kalloniatis,et al.  Amino acid neurochemistry of the vertebrate retina , 1999, Progress in Retinal and Eye Research.

[65]  P. Bernstein,et al.  In vivo isomerization of all-trans- to 11-cis-retinoids in the eye occurs at the alcohol oxidation state. , 1986, Biochemistry.

[66]  I. Nonaka,et al.  Dp260 disrupted mice revealed prolonged implicit time of the b-wave in ERG and loss of accumulation of beta-dystroglycan in the outer plexiform layer of the retina. , 1997, Human molecular genetics.

[67]  A. J. Roman,et al.  Abnormal rod dark adaptation in autosomal dominant retinitis pigmentosa with proline-23-histidine rhodopsin mutation. , 1992, American journal of ophthalmology.

[68]  E. Zrenner,et al.  The variable interdependence of amplitude and implicit-time in PIII, b-wave and optic-nerve responses of the cat. , 1987, Experimental eye research.

[69]  D. Garbers,et al.  Two Eye Guanylyl Cyclases Are Expressed in the Same Photoreceptor Cells and Form Homomers in Preference to Heteromers* , 1997, The Journal of Biological Chemistry.

[70]  C. Grimm,et al.  Protective effect of halothane anesthesia on retinal light damage: inhibition of metabolic rhodopsin regeneration. , 2001, Investigative ophthalmology & visual science.

[71]  R. Eckenhoff,et al.  Halothane binding to a G protein coupled receptor in retinal membranes by photoaffinity labeling. , 2000, Biochemistry.

[72]  S. Brodie,et al.  Comparisons of the amplitude size and the reproducibility of three different electrodes to record the corneal flash electroretinogram in rodents , 2004, Documenta Ophthalmologica.

[73]  M. Cornwall,et al.  Bleached pigment activates transduction in isolated rods of the salamander retina. , 1994, The Journal of physiology.

[74]  T. Lamb,et al.  The involvement of rod photoreceptors in dark adaptation , 1981, Vision Research.

[75]  A. Cideciyan,et al.  An Alternative Phototransduction Model for Human Rod and Cone ERG a-waves: Normal Parameters and Variation with Age , 1996, Vision Research.

[76]  H. Kühn,et al.  Deactivation of photoactivated rhodopsin by rhodopsin-kinase and arrestin. , 1987, Journal of receptor research.

[77]  S. Smith Factors determining the potency of mydriatic drugs in man. , 1976, British journal of clinical pharmacology.

[78]  L. Frishman,et al.  Contributions to the electroretinogram of currents originating in proximal retina , 1988, Visual Neuroscience.

[79]  Barry Honig,et al.  New wavelength dependent visual pigment nomograms , 1977, Vision Research.

[80]  A. Vingrys,et al.  Extraction and modelling of oscillatory potentials , 2004, Documenta Ophthalmologica.

[81]  B. Lei The ERG of guinea pig (Cavis porcellus): comparison with I-type monkey and E-type rat , 2003, Documenta Ophthalmologica.

[82]  B. Grahn,et al.  Oscillatory potentials and light microscopic changes demonstrate an interaction between zinc and taurine in the developing rat retina. , 1997, The Journal of nutrition.

[83]  R. Skarda,et al.  The pharmacology of local anesthetics. , 1991, The Veterinary clinics of North America. Equine practice.

[84]  D. Foster,et al.  Comparison of colour discrimination and electroretinography in evaluation of visual pathway dysfunction in aretinopathic IDDM patients. , 1995, The British journal of ophthalmology.

[85]  Jennifer J. Kang Derwent,et al.  Excitation and desensitization of mouse rod photoreceptors in vivo following bright adapting light , 2002, The Journal of physiology.

[86]  G. H. Jacobs,et al.  Cone-based vision of rats for ultraviolet and visible lights. , 2001, The Journal of experimental biology.

[87]  N. Peachey,et al.  Comparison of three methods of estimating the parameters of the Naka-Rushton equation , 2005, Documenta Ophthalmologica.

[88]  R. Lund,et al.  The pupillary light response: Assessment of function mediated by intracranial retinal transplants , 1995, Neuroscience.

[89]  Zohreh Chiti,et al.  The S‐cone electroretinogram: a comparison of techniques, normative data and age‐related variation , 2003, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[90]  D. Hood,et al.  Rod transduction parameters from the a wave of local receptor populations. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[91]  R. Wooldridge,et al.  Advanced Engineering Mathematics , 1967, The Mathematical Gazette.

[92]  R. Hanitzsch Dependence of the b-wave on the potassium concentration in the isolated superfused rabbit retina , 1981, Documenta Ophthalmologica.

[93]  Denis A. Baylor,et al.  Prolonged photoresponses in transgenic mouse rods lacking arrestin , 1997, Nature.

[94]  K. Brown,et al.  The electroretinogram: its components and their origins. , 1968, UCLA forum in medical sciences.

[95]  Andrew J. Zele,et al.  Dark-adapted rod suppression of cone flicker detection: Evaluation of receptoral and postreceptoral interactions , 2006, Visual Neuroscience.

[96]  W. Hare,et al.  Temporal modulation of scotopic visual signals by A17 amacrine cells in mammalian retina in vivo. , 2003, Journal of neurophysiology.

[97]  P. Sieving,et al.  Retinopathy induced in mice by targeted disruption of the rhodopsin gene , 1997, Nature Genetics.

[98]  M. Kuze,et al.  Changes in Electroretinogram Oscillatory Potentials During Dark Adaptation , 2005, Japanese Journal of Ophthalmology.

[99]  K. Koch,et al.  One of the Ca2+ binding sites of recoverin exclusively controls interaction with rhodopsin kinase , 2005, Biological chemistry.

[100]  N. Peachey,et al.  Noninvasive recording and response characteristics of the rat dc-electroretinogram , 2002, Visual Neuroscience.

[101]  R. Linsenmeier,et al.  Intraretinal analysis of the a-wave of the electroretinogram (ERG) in dark-adapted intact cat retina , 2001, Visual Neuroscience.

[102]  Denis A. Baylor,et al.  The membrane current of single rod outer segments. , 1979 .

[103]  B. Chang,et al.  Study of rod- and cone-driven oscillatory potentials in mice. , 2006, Investigative ophthalmology & visual science.

[104]  T. Higashide,et al.  Targeted inactivation of synaptic HRG4 (UNC119) causes dysfunction in the distal photoreceptor and slow retinal degeneration, revealing a new function. , 2007, Experimental eye research.

[105]  W. Stiles,et al.  Colour-matching data and the spectral absorption curves of visual pigments. , 1974, Vision research.

[106]  M. Naash,et al.  Photoreceptor physiology in the rat is governed by the light environment. , 1989, Experimental eye research.

[107]  M. Slaughter,et al.  B-wave of the electroretinogram. A reflection of ON bipolar cell activity , 1989, The Journal of general physiology.

[108]  A. Vingrys,et al.  Comparison of guinea pig electroretinograms measured with bipolar corneal and unipolar intravitreal electrodes , 2004, Documenta Ophthalmologica.

[109]  K. Alexander,et al.  Temporal properties of the mouse cone electroretinogram. , 2002, Journal of neurophysiology.

[110]  M. Naash,et al.  Effect of light history on retinal antioxidants and light damage susceptibility in the rat. , 1987, Experimental eye research.

[111]  J. Lubiński,et al.  Electroretinographic changes in the inner retinal layers of the retained eyes of patients with sporadic unilateral retinoblastoma , 2002, Ophthalmic genetics.

[112]  A. U. Meyer,et al.  Extraction and modeling of the Oscillatory Potential: signal conditioning to obtain minimally corrupted Oscillatory Potentials , 2004, Documenta Ophthalmologica.

[113]  P. Sieving,et al.  Inner retinal contributions to the primate photopic fast flicker electroretinogram. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[114]  M. Kondo,et al.  [The effect of age on short-wavelength sensitive cone electroretinograms and long-and middle-wavelength sensitive cone electroretinograms]. , 1997, Nippon Ganka Gakkai zasshi.

[115]  D R Pepperberg,et al.  Photoresponses of human rods in vivo derived from paired-flash electroretinograms , 1997, Visual Neuroscience.

[116]  J. Robson,et al.  Response linearity and kinetics of the cat retina: The bipolar cell component of the dark-adapted electroretinogram , 1995, Visual Neuroscience.

[117]  K. Alexander,et al.  Rapid and slow changes in the human cone electroretinogram during light and dark adaptation , 1992, Vision Research.

[118]  P. Nelson,et al.  Delayed Dark Adaptation in 11-cis-Retinol Dehydrogenase-deficient Mice , 2005, Journal of Biological Chemistry.

[119]  Jian-xing Ma,et al.  Retinyl esters are the substrate for isomerohydrolase. , 2003, Biochemistry.

[120]  R. Rosenblum Electroretinographic evaluation of the Bunsen-Roscoe law for the human eye at high energy levels. , 1971, Investigative Ophthalmology.

[121]  Andrew J Anderson,et al.  Multiple processes mediate flicker sensitivity , 2001, Vision Research.

[122]  Bang V Bui,et al.  The gradient of retinal functional changes during acute intraocular pressure elevation. , 2005, Investigative ophthalmology & visual science.

[123]  A. Vingrys,et al.  Rod photoreceptor dysfunction in diabetes: activation, deactivation, and dark adaptation. , 2006, Investigative ophthalmology & visual science.

[124]  S. Brodie,et al.  Evaluation of different recording parameters to establish a standard for flash electroretinography in rodents , 2001, Vision Research.

[125]  D. Lodge,et al.  The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N‐methyl‐aspartate , 1983, British journal of pharmacology.

[126]  J. Miller,et al.  Amplification of phosphodiesterase activation is greatly reduced by rhodopsin phosphorylation. , 1986, Biochemistry.

[127]  R. Hanitzsch,et al.  The effect of GABA and the GABA-uptake-blocker NO-711 on the b-wave of the ERG and the responses of horizontal cells to light , 2003, Graefe's Archive for Clinical and Experimental Ophthalmology.

[128]  N. Drasdo,et al.  S-cone, L+M-cone, and pattern, electroretinograms in ocular hypertension and glaucoma , 2004, Vision Research.

[129]  Anne B. Fulton,et al.  The human rod ERG: Correlation with psychophysical responses in light and dark adaptation , 1978, Vision Research.

[130]  John P. Sundberg,et al.  Systematic Evaluation of the Mouse Eye : Anatomy, Pathology, and Biomethods , 2001 .

[131]  E N Pugh,et al.  Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction. , 1994, Investigative ophthalmology & visual science.

[132]  C. Karwoski,et al.  The origin of slow PIII in frog retina: Current source density analysis in the eyecup and isolated retina , 1997, Visual Neuroscience.

[133]  K. Palczewski,et al.  The role of arrestin and retinoids in the regeneration pathway of rhodopsin. , 1992, The Journal of biological chemistry.

[134]  E. Pugh,et al.  Recovery phase of the murine rod photoresponse reconstructed from electroretinographic recordings , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[135]  M. Naash,et al.  Properties of the mouse cone-mediated electroretinogram during light adaptation , 1993, Neuroscience Letters.

[136]  M. Marmor,et al.  Guidelines for basic pattern electroretinography , 1995, Documenta Ophthalmologica.

[137]  G. R. Jackson,et al.  Impact of aging and age-related maculopathy on activation of the a-wave of the rod-mediated electroretinogram. , 2004, Investigative ophthalmology & visual science.

[138]  G. Strichartz Molecular Mechanisms of Nerve Block by Local Anesthetics , 1976, Anesthesiology.

[139]  G. Wald The Molecular Basis of Visual Excitation , 1968, Nature.

[140]  W. A. Hagins,et al.  Signal Transmission along Retinal Rods and the Origin of the Electroretinographic a-Wave , 1969, Nature.

[141]  B. Völgyi,et al.  Convergence and Segregation of the Multiple Rod Pathways in Mammalian Retina , 2004, The Journal of Neuroscience.

[142]  James D. Akula,et al.  The sensitivity and spectral identity of the cones driving the b-wave of the rat electroretinogram , 2003, Visual Neuroscience.

[143]  K. Palczewski,et al.  Structural and Enzymatic Aspects of Rhodopsin Phosphorylation (*) , 1996, The Journal of Biological Chemistry.

[144]  R. Hanitzsch,et al.  The influence of MgCl2 and APB on the light-induced potassium changes and the ERG b-wave of the isolated superfused rat retina , 1996, Vision Research.

[145]  H. Lester,et al.  Genetic Inactivation of an Inwardly Rectifying Potassium Channel (Kir4.1 Subunit) in Mice: Phenotypic Impact in Retina , 2000, The Journal of Neuroscience.

[146]  E. Newman,et al.  Model of electroretinogram b-wave generation: a test of the K+ hypothesis. , 1984, Journal of neurophysiology.

[147]  J. V. van Hateren,et al.  The photocurrent response of human cones is fast and monophasic , 2006, BMC Neuroscience.

[148]  L. Frishman,et al.  Intraretinal analysis of the threshold dark-adapted ERG of cat retina. , 1989, Journal of neurophysiology.

[149]  K. Hofmann,et al.  A model for the recovery kinetics of rod phototransduction, based on the enzymatic deactivation of rhodopsin. , 1998, Biophysical journal.

[150]  G. Brindley,et al.  The origin of the early receptor potential of the retina , 1966, The Journal of physiology.

[151]  J. Hetling,et al.  Sensitivity and kinetics of mouse rod flash responses determined in vivo from paired‐flash electroretinograms , 1999, The Journal of physiology.

[152]  T. Lamb,et al.  Dark adaptation of human rod bipolar cells measured from the b‐wave of the scotopic electroretinogram , 2006, The Journal of physiology.

[153]  P. Mcnaughton,et al.  Response properties of cones from the retina of the tiger salamander. , 1991, The Journal of physiology.

[154]  P. Sterling,et al.  Microcircuits for Night Vision in Mouse Retina , 2001, The Journal of Neuroscience.

[155]  K. Narfström,et al.  Cone positive off-response in normal and dystrophic cats , 1998, Documenta Ophthalmologica.

[156]  G H Jacobs,et al.  Reexamination of spectral mechanisms in the rat (Rattus norvegicus). , 1986, Journal of comparative psychology.

[157]  M. Kondo,et al.  Recording multifocal electroretinogram on and off responses in humans. , 1998, Investigative ophthalmology & visual science.

[158]  R. Hansen,et al.  Recovery of the rod photoresponse in infant rats , 2003, Vision Research.

[159]  R. Hansen,et al.  Scotopic stimulus/response relations of the B-wave of the electroretinogram , 1988, Documenta Ophthalmologica.

[160]  A. Sillman,et al.  Sensitivity and response kinetics alter during suppression-recovery in cone photoreceptors , 1986, Experientia.

[161]  D. Hood,et al.  Human cone receptor activity: The leading edge of the a–wave and models of receptor activity , 1993, Visual Neuroscience.

[162]  P. Padmos,et al.  Influence of anesthetics, ethyl alcohol, and Freon on dark adaptation of monkey cone ERG. , 1977, Investigative ophthalmology & visual science.

[163]  T. Lamb,et al.  Light adaptation and dark adaptation of human rod photoreceptors measured from the a‐wave of the electroretinogram , 1999, The Journal of physiology.

[164]  R. M. Carter,et al.  A modified ERG technique and the results obtained in X-linked retinitis pigmentosa. , 1983, The British journal of ophthalmology.

[165]  Van Pelt Lf Ketamine and xylazine for surgical anesthesia in rats. , 1977 .

[166]  Donald C Hood,et al.  Quantitative electroretinogram measures of phototransduction in cone and rod photoreceptors: normal aging, progression with disease, and test-retest variability. , 2002, Archives of ophthalmology.

[167]  P. Sieving,et al.  The electroretinogram of the rhodopsin knockout mouse , 1999, Visual Neuroscience.

[168]  S. Semple-Rowland,et al.  The effects of dim cyclic light on pigment epithelial function in the albino rat. , 1986, Current eye research.

[169]  M. Bach,et al.  Do's and don'ts in Fourier analysis of steady-state potentials , 2004, Documenta Ophthalmologica.

[170]  K. Naka,et al.  S‐potentials from colour units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[171]  K. Palczewski,et al.  Confronting Complexity: the Interlink of Phototransduction and Retinoid Metabolism in the Vertebrate Retina , 2001, Progress in Retinal and Eye Research.

[172]  A. Cideciyan,et al.  Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[173]  J. Dowling,et al.  Light-induced potassium fluxes in the skate retina , 1985, Neuroscience.

[174]  J. Jin,et al.  Modulation of transduction gain in light adaptation of retinal rods , 1994, Visual Neuroscience.

[175]  N. Kikawada,et al.  Variations in the corneo-retinal standing potential of the vertebrate eye during light and dark adaptations. , 1968, The Japanese journal of physiology.

[176]  A. Vingrys,et al.  Essential fatty acids and visual dysfunction , 2007 .

[177]  D. Baylor,et al.  Visual transduction in cones of the monkey Macaca fascicularis. , 1990, The Journal of physiology.

[178]  E. Zrenner,et al.  Clinical electrophysiology of two rod pathways: normative values and clinical application , 2001, Graefe's Archive for Clinical and Experimental Ophthalmology.

[179]  R. Beuerman,et al.  Topical Bupivacaine and Proparacaine: A Comparison of Toxicity, Onset of Action, and Duration of Action , 1993, Cornea.

[180]  T. Lamb,et al.  Amplification and kinetics of the activation steps in phototransduction. , 1993, Biochimica et biophysica acta.

[181]  J. Robson,et al.  Rod and cone contributions to the a‐wave of the electroretinogram of the macaque , 2003, The Journal of physiology.

[182]  S. Tobimatsu,et al.  Properties of rat cone-mediated electroretinograms during light adaptation. , 1999, Current eye research.

[183]  D. Hood,et al.  A computational model of the amplitude and implicit time of the b-wave of the human ERG , 1992, Visual Neuroscience.

[184]  W. A. Hagins,et al.  Kinetics of the photocurrent of retinal rods. , 1972, Biophysical journal.

[185]  S Kawamura,et al.  Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[186]  P. Sieving,et al.  Corneal wick electrode for recording bright flash electroretinograms and early receptor potentials. , 1978, Archives of ophthalmology.

[187]  J. Kremers,et al.  Alterations of L- and M-cone driven ERGs in cone and cone–rod dystrophies , 2003, Vision Research.

[188]  J. Robson,et al.  Photoreceptor and bipolar cell contributions to the cat electroretinogram: a kinetic model for the early part of the flash response. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[189]  C. Chow Fatty Acids in Foods and their Health Implications,Third Edition , 2007 .

[190]  P. Kofuji,et al.  Contribution of Kir4.1 to the mouse electroretinogram. , 2004, Molecular vision.

[191]  R. Sidman,et al.  Phototransduction in transgenic mice after targeted deletion of the rod transducin α-subunit , 2000 .

[192]  W Seiple,et al.  Multifocal rod electroretinograms. , 1998, Investigative ophthalmology & visual science.

[193]  T. Lamb,et al.  Time course of the flash response of dark‐ and light‐adapted human rod photoreceptors derived from the electroretinogram , 2001, The Journal of physiology.

[194]  D. Farber,et al.  Rods are selectively altered by lead: I. Electrophysiology and biochemistry. , 1988, Experimental eye research.

[195]  J. Knight,et al.  Ketamine alone and combined with diazepam or xylazine in laboratory animals: a 10 year experience , 1981, Laboratory animals.

[196]  M. Breton,et al.  Empiric limits of rod photocurrent component underlying a-wave response in the electroretinogram , 2004, Documenta Ophthalmologica.

[197]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[198]  S. Molotchnikoff,et al.  Calibration of flashtube photostimulators in electroretinography. , 1970, Vision research.

[199]  J. Dowling,et al.  The oscillatory potentials of the mudpuppy retina. , 1978, Investigative ophthalmology & visual science.

[200]  W. Ridder,et al.  Causes of cataract development in anesthetized mice. , 2002, Experimental eye research.

[201]  T. Eysteinsson,et al.  Modulation of the components of the rat dark-adapted electroretinogram by the three subtypes of GABA receptors. , 2003, Visual neuroscience.

[202]  C. M. Kemp,et al.  Abnormal dark adaptation kinetics in autosomal dominant sector retinitis pigmentosa due to rod opsin mutation. , 1992, The British journal of ophthalmology.

[203]  W. Zimmerman,et al.  Biochemical aspects of the visual process. XXX. Distribution of stereospecific retinol dehydrogenase activities in subcellular fractions of bovine retina and pigment epithelium. , 1975, Experimental eye research.

[204]  C. Bridges,et al.  The visual cycle operates via an isomerase acting on all-trans retinol in the pigment epithelium. , 1987, Science.

[205]  R. M. Joy,et al.  Modification of GABA-mediated inhibition by various injectable anesthetics. , 1992, Anesthesiology.

[206]  G. Arden,et al.  Rod-cone interactions and analysis of retinal disease. , 1985, The British journal of ophthalmology.

[207]  H. Jägle,et al.  L:M-cone ratio estimates of the outer and inner retina and its impact on sex differences in ERG amplitudes , 2006, Documenta Ophthalmologica.

[208]  D. S. Lin,et al.  Can Prenatal N-3 Fatty Acid Deficiency Be Completely Reversed after Birth? Effects on Retinal and Brain Biochemistry and Visual Function in Rhesus Monkeys , 2005, Pediatric Research.

[209]  C. Weidner The c-wave in the erg of albino rat , 1976, Vision Research.

[210]  D. Jewett,et al.  Autonomic components of the human pupillary light reflex. , 1990, Investigative ophthalmology & visual science.

[211]  J. Hurley,et al.  Evaluation of the contributions of recoverin and GCAPs to rod photoreceptor light adaptation and recovery to the dark state. , 2001, Progress in brain research.

[212]  Young H. Kwon,et al.  Functional characterization of retina and optic nerve after acute ocular ischemia in rats. , 2003, Investigative ophthalmology & visual science.

[213]  Yiannis Koutalos,et al.  Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors. , 2005, Biophysical journal.

[214]  H. Wässle,et al.  Glycinergic synapses in the rod pathway of the rat retina: cone bipolar cells express the alpha 1 subunit of the glycine receptor , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[215]  A. Klistorner,et al.  Temporal analysis of the topographic ERG: Chromatic versus achromatic stimulation , 1998, Vision Research.

[216]  S. Kjellström,et al.  Retinal Function in Rabbits Does Not Improve 4–5 Months after Terminating Treatment with Vigabatrin , 2006, Documenta Ophthalmologica.

[217]  E. Adachi-Usami,et al.  Effect of body temperature on electroretinogram of mice. , 2002, Investigative ophthalmology & visual science.

[218]  P. Sieving,et al.  Characterization of the rod photoresponse isolated from the dark-adapted primate ERG , 2001, Visual Neuroscience.

[219]  E. Pugh,et al.  UV- and Midwave-Sensitive Cone-Driven Retinal Responses of the Mouse: A Possible Phenotype for Coexpression of Cone Photopigments , 1999, The Journal of Neuroscience.

[220]  S. Kawamura,et al.  Regeneration of ultraviolet pigments of vertebrates , 1998, FEBS letters.

[221]  R. Koenekoop,et al.  Evidence supportive of a functional discrimination between photopic oscillatory potentials as revealed with cone and rod mediated retinopathies , 2004, Documenta Ophthalmologica.

[222]  C. Grimbergen,et al.  Investigation into the origin of the noise of surface electrodes , 2002, Medical and Biological Engineering and Computing.

[223]  A. Vingrys,et al.  The contribution of cone responses to rat electroretinograms , 2001, Clinical & experimental ophthalmology.

[224]  T. Salt,et al.  Non-competitive NMDA-receptor antagonists and anoxic degeneration of the ERG B-wave in vitro , 1991, Eye.

[225]  M. Simon,et al.  Mice Lacking G-Protein Receptor Kinase 1 Have Profoundly Slowed Recovery of Cone-Driven Retinal Responses , 2000, The Journal of Neuroscience.

[226]  G. H. Jacobs,et al.  Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse , 2004, Vision Research.

[227]  T. Lamb,et al.  Recovery of the human photopic electroretinogram after bleaching exposures: estimation of pigment regeneration kinetics , 2004, The Journal of physiology.

[228]  T. Lamb,et al.  Contribution of cone photoreceptors and post‐receptoral mechanisms to the human photopic electroretinogram , 2004, The Journal of physiology.

[229]  D. G. Green,et al.  A dissection of the electroretinogram from the isolated rat retina with microelectrodes and drugs , 1999, Visual Neuroscience.

[230]  K. Alexander,et al.  Pharmacological analysis of the rat cone electroretinogram , 2002, Visual Neuroscience.

[231]  J. Pokorny,et al.  Clinical electroretinography for short wavelength sensitive cones. , 1987, Investigative ophthalmology & visual science.

[232]  L. Chalupa,et al.  Rod-cone interaction in human scotopic vision. I. Temporal analysis. , 1973, Vision research.

[233]  R. Massof,et al.  Properties of electroretinographic intensity-response functions in retinitis pigmentosa , 1984, Documenta Ophthalmologica.

[234]  J. Miller,et al.  Inhibition of transducin activation and guanosine triphosphatase activity by aluminum ion. , 1989, The Journal of biological chemistry.

[235]  C. Casanova,et al.  Dark adaptation is faster in pigmented than albino rats , 2003, Documenta Ophthalmologica.

[236]  K. Alexander,et al.  Spatial properties of rod-cone interactions in flicker and hue detection , 1990, Vision Research.

[237]  C. Karwoski,et al.  Current source density analysis of retinal field potentials. II. Pharmacological analysis of the b-wave and M-wave. , 1994, Journal of neurophysiology.

[238]  M. Kondo,et al.  Luminance dependence of neural components that underlies the primate photopic electroretinogram. , 2004, Investigative ophthalmology & visual science.

[239]  S. Bloomfield,et al.  Rod Vision: Pathways and Processing in the Mammalian Retina , 2001, Progress in Retinal and Eye Research.

[240]  T. Tomita,et al.  Origins of the erg waves , 1981, Vision Research.

[241]  P. Patil Antimuscarinic effects of stereoisomers of tropicamide on rabbit iris sphincter. , 1978, Investigative ophthalmology & visual science.

[242]  M. Schneck,et al.  A comparison of three techniques to estimate the human dark-adapted cone electroretinogram , 2003, Vision Research.

[243]  E. Newman,et al.  Regional specialization of retinal glial cell membrane , 1984, Nature.

[244]  Robert G. Smith,et al.  The AII Amacrine Network: Coupling can Increase Correlated Activity , 1996, Vision Research.

[245]  D. Baylor,et al.  Location and function of voltage‐sensitive conductances in retinal rods of the salamander, Ambystoma tigrinum. , 1984, The Journal of physiology.

[246]  M. Low,et al.  Dysfunctional Light-Evoked Regulation of cAMP in Photoreceptors and Abnormal Retinal Adaptation in Mice Lacking Dopamine D4 Receptors , 2002, The Journal of Neuroscience.

[247]  S. Yokoyama Molecular evolution of vertebrate visual pigments , 2000, Progress in Retinal and Eye Research.

[248]  G. H. Jacobs,et al.  Spectral sensitivity, photopigments, and color vision in the guinea pig (Cavia porcellus). , 1994, Behavioral neuroscience.

[249]  B. Bui,et al.  Ganglion cell contributions to the rat full‐field electroretinogram , 2003, The Journal of physiology.

[250]  T. Lamb,et al.  Dark adaptation of toad rod photoreceptors following small bleaches , 1994, Vision Research.

[251]  Marie E. Burns,et al.  Rapid and Reproducible Deactivation of Rhodopsin Requires Multiple Phosphorylation Sites , 2000, Neuron.

[252]  B. Oakley Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization , 1977, The Journal of general physiology.

[253]  K. Nakanishi,et al.  Substrate specificities and mechanism in the enzymatic processing of vitamin A into 11-cis-retinol. , 1990, Biochemistry.

[254]  G. H. Jacobs,et al.  Retinal receptors in rodents maximally sensitive to ultraviolet light , 1991, Nature.

[255]  Neal S. Peachey,et al.  Electrophysiological analysis of visual function in mutant mice , 2003, Documenta Ophthalmologica.

[256]  W. A. Hagins,et al.  Dark current and photocurrent in retinal rods. , 1970, Biophysical journal.

[257]  Á. Szél,et al.  Two cone types of rat retina detected by anti-visual pigment antibodies. , 1992, Experimental eye research.

[258]  D. G. Green,et al.  Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. , 1976, Journal of neurophysiology.

[259]  N. Kapousta-Bruneau Effects of sodium pentobarbital on the components of electroretinogram in the isolated rat retina , 1999, Vision Research.

[260]  N. Drasdo,et al.  The s-cone PHNR and pattern ERG in primary open angle glaucoma. , 2001, Investigative ophthalmology & visual science.

[261]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[262]  B. Bui,et al.  Origin of electroretinogram amplitude growth during light adaptation in pigmented rats , 2006, Visual Neuroscience.

[263]  Hendrik P N Scholl,et al.  Cone selective adaptation influences L- and M-cone driven signals in electroretinography and psychophysics. , 2003, Journal of vision.

[264]  M. Slaughter,et al.  2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. , 1981, Science.

[265]  R Pallás-Areny,et al.  Ag-AgCl electrode noise in high-resolution ECG measurements. , 2000, Biomedical instrumentation & technology.

[266]  D. Bok,et al.  Molecular and Biochemical Characterization of Lecithin Retinol Acyltransferase* , 1999, The Journal of Biological Chemistry.

[267]  Matthew L. Severns,et al.  The care and fitting of Naka-Rushton functions to electroretinographic intensity-response data , 2005, Documenta Ophthalmologica.

[268]  J. Robson,et al.  Sampling and interpolation of the a-wave of the electroretinogram , 2004, Documenta Ophthalmologica.

[269]  J. L. Schnapf,et al.  Visual transduction in human rod photoreceptors. , 1993, The Journal of physiology.

[270]  T. Lamb,et al.  Dark adaptation and the retinoid cycle of vision , 2004, Progress in Retinal and Eye Research.

[271]  T. Williams,et al.  Photostasis: regulation of daily photon-catch by rat retinas in response to various cyclic illuminances. , 1986, Experimental eye research.

[272]  N. Peachey,et al.  Light-evoked responses of the mouse retinal pigment epithelium. , 2004, Journal of neurophysiology.

[273]  S. Yokoyama,et al.  Genetic analyses of the green visual pigments of rabbit (Oryctolagus cuniculus) and rat (Rattus norvegicus). , 1998, Gene.

[274]  P. Gouras,et al.  The effect of body temperature on the murine electroretinogram , 2003, Documenta Ophthalmologica.

[275]  W. Hare,et al.  Origins of the electroretinogram oscillatory potentials in the rabbit retina , 2004, Visual Neuroscience.

[276]  Mineo Kondo,et al.  Nrl is required for rod photoreceptor development , 2001, Nature Genetics.

[277]  D. Birch,et al.  Delayed dark-adaptation and lipofuscin accumulation in abcr+/- mice: implications for involvement of ABCR in age-related macular degeneration. , 2001, Investigative ophthalmology & visual science.

[278]  N. Drasdo,et al.  Silent substitution S‐cone electroretinogram in subjects with diabetes mellitus , 2005, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[279]  G H Jacobs,et al.  Electroretinogram flicker photometry and its applications. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.