A surface functionalized nanoporous titania integrated microfluidic biochip.

We present a novel and efficient nanoporous microfluidic biochip consisting of a functionalized chitosan/anatase titanium dioxide nanoparticles (antTiO2-CH) electrode integrated in a polydimethylsiloxane (PDMS) microchannel assembly. The electrode surface can be enzyme functionalized depending on the application. We studied in detail cholesterol sensing using the cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) functionalized chitosan supported mesoporous antTiO2-CH microfluidic electrode. The available functional groups present in the nanoporous antTiO2-CH surface in this microfluidic biochip can play an important role for enzyme functionalization, which has been quantified by the X-ray photoelectron spectroscopic technique. The Brunauer-Emmett-Teller (BET) studies are used to quantify the specific surface area and nanopore size distribution of titania nanoparticles with and without chitosan. Point defects in antTiO2 can increase the heterogeneous electron transfer constant between the electrode and enzyme active sites, resulting in improved electrochemical behaviour of the microfluidic biochip. The impedimetric response of the nanoporous microfluidic biochip (ChEt-ChOx/antTiO2-CH) shows a high sensitivity of 6.77 kΩ (mg dl(-1))(-1) in the range of 2-500 mg dl(-1), a low detection limit of 0.2 mg dl(-1), a low Michaelis-Menten constant of 1.3 mg dl(-1) and a high selectivity. This impedimetric microsystem has enormous potential for clinical diagnostics applications.

[1]  Bansi D Malhotra,et al.  A highly efficient microfluidic nano biochip based on nanostructured nickel oxide. , 2013, Nanoscale.

[2]  L. Gervais,et al.  Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. , 2009, Lab on a chip.

[3]  Thorsten Wagner,et al.  Mesoporous materials as gas sensors. , 2013, Chemical Society reviews.

[4]  Deming Kong,et al.  Mesoporous phosphonate-TiO2 nanoparticles for simultaneous bioresponsive sensing and controlled drug release. , 2013, The Analyst.

[5]  G. Whitesides,et al.  Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies , 2003, Electrophoresis.

[6]  Robert Langer,et al.  A BioMEMS review: MEMS technology for physiologically integrated devices , 2004, Proceedings of the IEEE.

[7]  Zongping Shao,et al.  Facile Synthesis of Nanocrystalline TiO2 Mesoporous Microspheres for Lithium-Ion Batteries , 2011 .

[8]  N. Pourmand,et al.  Label-Free Impedance Biosensors: Opportunities and Challenges. , 2007, Electroanalysis.

[9]  G. Palmisano,et al.  Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water. , 2008, Journal of the American Chemical Society.

[10]  Po Ki Yuen,et al.  Microfluidic Platforms for Hepatocyte Cell Culture: New Technologies and Applications , 2011, Annals of Biomedical Engineering.

[11]  Nam-Gyu Park,et al.  Compact Inverse‐Opal Electrode Using Non‐Aggregated TiO2 Nanoparticles for Dye‐Sensitized Solar Cells , 2009 .

[12]  Rafiq Ahmad,et al.  Chemical and biological sensors based on metal oxide nanostructures. , 2012, Chemical communications.

[13]  P. Solanki,et al.  Nanostructured Iron Oxide Platform for Impedimetric Cholesterol Detection , 2010 .

[14]  Byunghun Lee,et al.  One-chip electronic detection of DNA hybridization using precision impedance-based CMOS array sensor. , 2010, Biosensors & bioelectronics.

[15]  A. Bonanni,et al.  Use of nanomaterials for impedimetric DNA sensors: a review. , 2010, Analytica chimica acta.

[16]  A. Manz,et al.  Micro total analysis systems. Recent developments. , 2004, Analytical chemistry.

[17]  Xue-qing Gong,et al.  Anatase TiO2 crystals with exposed high-index facets. , 2011, Angewandte Chemie.

[18]  George M Whitesides,et al.  Electrochemical sensing in paper-based microfluidic devices. , 2010, Lab on a chip.

[19]  Shekhar Bhansali,et al.  Antibody functionalized interdigitated micro-electrode (IDmicroE) based impedimetric cortisol biosensor. , 2010, The Analyst.

[20]  C Gärtner,et al.  Polymer microfabrication methods for microfluidic analytical applications , 2000, Electrophoresis.

[21]  A. Manz,et al.  Revisiting lab-on-a-chip technology for drug discovery , 2012, Nature Reviews Drug Discovery.

[22]  Fuzhi Huang,et al.  Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High‐Performance Dye‐Sensitized Solar Cells , 2009 .

[23]  Guo-Li Shen,et al.  A nano-porous CeO(2)/Chitosan composite film as the immobilization matrix for colorectal cancer DNA sequence-selective electrochemical biosensor. , 2006, Talanta.

[24]  Po-Chiang Chen,et al.  Devices and chemical sensing applications of metal oxide nanowires , 2009 .

[25]  Ronghui Wang,et al.  TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes. , 2009, Nano letters.

[26]  F. Lisdat,et al.  The use of electrochemical impedance spectroscopy for biosensing , 2008, Analytical and bioanalytical chemistry.

[27]  Weijia Zhou,et al.  Enhancement of selective determination of the perfect match and mismatch of single nucleobases with a biosensing electrode based on surface-coarsened anatase TiO2 nanobelts† , 2011 .

[28]  P. Solanki,et al.  Nanostructured metal oxide-based biosensors , 2011 .

[29]  A. Fisher,et al.  Electron traps and their effect on the surface chemistry of TiO2(110) , 2010, Proceedings of the National Academy of Sciences.

[30]  R. John,et al.  Nanostructured anatase-titanium dioxide based platform for application to microfluidics cholesterol biosensor , 2012 .

[31]  D. K. Wong,et al.  Fabrication and Impedance Analysis of n‐ZnO Nanorod/p‐Si Heterojunctions to Investigate Carrier Concentrations in Zn/O Source‐ Ratio‐Tuned ZnO Nanorod Arrays , 2007 .

[32]  P. Solanki,et al.  Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. , 2008, Analytica chimica acta.

[33]  Ajeet Kaushik,et al.  Metal oxide–chitosan based nanocomposite for cholesterol biosensor , 2009 .

[34]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[35]  D. J. Harrison,et al.  Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip , 1993, Science.

[36]  Wenjian Weng,et al.  Highly sensitive hydrogen peroxide biosensors based on TiO2 nanodots/ITO electrodes , 2012 .

[37]  Henry J. Snaith,et al.  Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance , 2013, Nature.

[38]  G. Cao,et al.  Effect of surface defects on biosensing properties of TiO2 nanotube arrays , 2011 .