Boosting Black Box Variational Inference
暂无分享,去创建一个
Gunnar Rätsch | Francesco Locatello | Rajiv Khanna | Isabel Valera | Gideon Dresdner | G. Rätsch | Francesco Locatello | Rajiv Khanna | I. Valera | Gideon Dresdner
[1] Ryan P. Adams,et al. Variational Boosting: Iteratively Refining Posterior Approximations , 2016, ICML.
[2] David M. Blei,et al. Variational Inference: A Review for Statisticians , 2016, ArXiv.
[3] Martin Jaggi,et al. A Unified Optimization View on Generalized Matching Pursuit and Frank-Wolfe , 2017, AISTATS.
[4] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[5] Simon Lacoste-Julien,et al. Convergence Rate of Frank-Wolfe for Non-Convex Objectives , 2016, ArXiv.
[6] Gunnar Rätsch,et al. An Introduction to Boosting and Leveraging , 2002, Machine Learning Summer School.
[7] Nasser M. Nasrabadi,et al. Pattern Recognition and Machine Learning , 2006, Technometrics.
[8] Max Welling,et al. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap , 2014, ICML.
[9] Dustin Tran,et al. Edward: A library for probabilistic modeling, inference, and criticism , 2016, ArXiv.
[10] Shibhansh Dohare,et al. Variational Inference via Transformations on Distributions , 2017, ArXiv.
[11] T. Jaakkola,et al. Improving the Mean Field Approximation Via the Use of Mixture Distributions , 1999, Learning in Graphical Models.
[12] Shakir Mohamed,et al. Variational Inference with Normalizing Flows , 2015, ICML.
[13] Martin Jaggi,et al. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.
[14] Bernhard Schölkopf,et al. AdaGAN: Boosting Generative Models , 2017, NIPS.
[15] Gunnar Rätsch,et al. Boosting Variational Inference: an Optimization Perspective , 2017, AISTATS.
[16] Martin Jaggi,et al. Convex Optimization without Projection Steps , 2011, ArXiv.
[17] Gunnar Rätsch,et al. SOM-VAE: Interpretable Discrete Representation Learning on Time Series , 2018, ICLR 2018.
[18] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[19] Sean Gerrish,et al. Black Box Variational Inference , 2013, AISTATS.
[20] Ruslan Salakhutdinov,et al. Probabilistic Matrix Factorization , 2007, NIPS.
[21] Xiangyu Wang,et al. Boosting Variational Inference , 2016, ArXiv.
[22] Martin Jaggi,et al. On the Global Linear Convergence of Frank-Wolfe Optimization Variants , 2015, NIPS.
[23] Ardavan Saeedi,et al. Variational Particle Approximations , 2014, J. Mach. Learn. Res..
[24] Gunnar Rätsch,et al. SOM-VAE: Interpretable Discrete Representation Learning on Time Series , 2019, ICLR.
[25] Rahul G. Krishnan,et al. Barrier Frank-Wolfe for Marginal Inference , 2015, NIPS.