Scalable Synthesis of Selenide Solid-State Electrolytes for Sodium-Ion Batteries.

Solid-state sodium-ion batteries employing superionic solid-state electrolytes (SSEs) offer low manufacturing costs and improved safety and are considered to be a promising alternative to current Li-ion batteries. Solid-state electrolytes must have high chemical/electrochemical stability and superior ionic conductivity. In this work, we employed precursor and solvent engineering to design scalable and cost-efficient solution routes to produce air-stable sodium selenoantimonate (Na3SbSe4). First, a simple metathesis route is demonstrated for the production of the Sb2Se3 precursor that is subsequently used to form ternary Na3SbSe4 through two different routes: alcohol-mediated redox and alkahest amine-thiol approaches. In the former, the electrolyte was successfully synthesized in EtOH by using a similar redox solution coupled with Sb2Se3, Se, and NaOH as a basic reagent. In the alkahest approach, an amine-thiol solvent mixture is utilized for the dissolution of elemental Se and Na and further reaction with the binary precursor to obtain Na3SbSe4. Both routes produced electrolytes with room temperature ionic conductivity (∼0.2 mS cm-1) on par with reported performance from other conventional thermo-mechanical routes. These novel solution-phase approaches showcase the diversity and application of wet chemistry in producing selenide-based electrolytes for all-solid-state sodium batteries.

[1]  Liang Zhao A comparative study on the clinical efficacy of microplate trans-carpometacarpal joint fixation and non-trans-carpometacarpal joint fixation in treating fractures with dislocation or subluxation of the base of the fourth and fifth metacarpal bones , 2023, Journal of Orthopaedic Surgery and Research.

[2]  Brenda Salley,et al.  The impact of a community-based music program during infancy on the quality of parent-child language interactions. , 2023, Child development.

[3]  Sangwoo Kang,et al.  Natural-Language-Driven Multimodal Representation Learning for Audio-Visual Scene-Aware Dialog System , 2023, Sensors.

[4]  M. Hayashi Evaluation and interpretation of cytogenetic test results based on biological relevance. , 2023, Mutation research. Genetic toxicology and environmental mutagenesis.

[5]  Yoshio Tanaka,et al.  Pharmacological study on the enhancing effects of U46619 on guinea pig urinary bladder smooth muscle contraction induced by acetylcholine and α,β-methylene ATP and the possible involvement of protein kinase C. , 2023, Journal of pharmacological sciences.

[6]  Erik A. Wu,et al.  Evaluating Electrolyte–Anode Interface Stability in Sodium All-Solid-State Batteries , 2022, ACS applied materials & interfaces.

[7]  Shou‐Hang Bo,et al.  Positioning solid-state sodium batteries in future transportation and energy storage. , 2022, Science bulletin.

[8]  V. Thangadurai,et al.  Solid Li- and Na-Ion Electrolytes for Next Generation Rechargeable Batteries , 2022, Chemistry of Materials.

[9]  Thorben Krauskopf,et al.  Two-Dimensional Substitution Series Na3P1–xSbxS4–ySey: Beyond Static Description of Structural Bottlenecks for Na+ Transport , 2022, Chemistry of Materials.

[10]  Hyun‐Wook Lee,et al.  Universal Solution Synthesis of Sulfide Solid Electrolytes Using Alkahest for All‐Solid‐State Batteries , 2022, Advanced materials.

[11]  C. Wolden,et al.  Solution Synthesis of Sb2S3 and Na3SbS4 Solid-State Electrolyte , 2021, Journal of The Electrochemical Society.

[12]  Feng Lin,et al.  Spatial and Temporal Analysis of Sodium-Ion Batteries , 2021, ACS energy letters.

[13]  Jianfeng Huang,et al.  Guiding Fabrication of Continuous Carbon-Confined Sb2Se3 Nanoparticle Structure for Durable Potassium-Storage Performance , 2021, ACS Applied Energy Materials.

[14]  Jiang Tang,et al.  Recent progress and perspectives on Sb2Se3-based photocathodes for solar hydrogen production via photoelectrochemical water splitting , 2021, Journal of Energy Chemistry.

[15]  Wooseok Yang,et al.  Emerging Binary Chalcogenide Light Absorbers: Material Specific Promises and Challenges , 2021, Chemistry of Materials.

[16]  S. Dou,et al.  Progress and Challenges for All‐Solid‐State Sodium Batteries , 2021 .

[17]  Shou‐Hang Bo,et al.  Critical interface between inorganic solid-state electrolyte and sodium metal , 2020 .

[18]  R. Agrawal,et al.  Analyzing and Tuning the Chalcogen-Amine-Thiol Complexes for Tailoring of Chalcogenide Syntheses. , 2020, Inorganic chemistry.

[19]  Sean P. Culver,et al.  Defect-Mediated Conductivity Enhancements in Na3–xPn1–xWxS4 (Pn = P, Sb) Using Aliovalent Substitutions , 2019, ACS Energy Letters.

[20]  M. Islam,et al.  Fundamentals of inorganic solid-state electrolytes for batteries , 2019, Nature Materials.

[21]  Xin Zhao,et al.  Investigating Chemistry of Metal Dissolution in Amine–Thiol Mixtures and Exploiting It toward Benign Ink Formulation for Metal Chalcogenide Thin Films , 2019, Chemistry of Materials.

[22]  Nijisha Pullanjiyot,et al.  Highly stable ethylene glycol-capped blue-emitting antimony selenide quantum dots via hydrothermal approach , 2019, Applied Nanoscience.

[23]  K. Tadanaga,et al.  Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery , 2019, Nature Reviews Chemistry.

[24]  Jun Hee Lee,et al.  Vacancy-Driven Na+ Superionic Conduction in New Ca-Doped Na3PS4 for All-Solid-State Na-Ion Batteries , 2018, ACS Energy Letters.

[25]  H. Rong,et al.  Na3SbSe4−xSx as Sodium Superionic Conductors , 2018, Scientific Reports.

[26]  Erik A. Wu,et al.  New Insights into the Interphase between the Na Metal Anode and Sulfide Solid-State Electrolytes: A Joint Experimental and Computational Study. , 2018, ACS applied materials & interfaces.

[27]  Li-Min Wang,et al.  Improvement in ion transport in Na3PSe4–Na3SbSe4 by Sb substitution , 2018, Journal of Materials Science.

[28]  Thorben Krauskopf,et al.  Influence of lattice dynamics on Na+-transport in the solid electrolyte Na3PS4−xSex , 2017 .

[29]  Xiaobo Ji,et al.  Rodlike Sb2Se3 Wrapped with Carbon: The Exploring of Electrochemical Properties in Sodium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[30]  S. Adams,et al.  Vacancy-Controlled Na+ Superion Conduction in Na11 Sn2 PS12. , 2017, Angewandte Chemie.

[31]  A. Hayashi,et al.  All-Solid-State Na/S Batteries with a Na3PS4 Electrolyte Operating at Room Temperature , 2017 .

[32]  Jun Lu,et al.  Exceptionally High Ionic Conductivity in Na3P0.62As0.38S4 with Improved Moisture Stability for Solid‐State Sodium‐Ion Batteries , 2017, Advanced materials.

[33]  M. Kanatzidis Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases. , 2017, Inorganic chemistry.

[34]  J. Vidal,et al.  Substitution of Li for Cu in Cu2ZnSnS4: Toward Wide Band Gap Absorbers with Low Cation Disorder for Thin Film Solar Cells. , 2017, Inorganic chemistry.

[35]  L. Mai,et al.  Ultralong Sb2Se3 Nanowire-Based Free-Standing Membrane Anode for Lithium/Sodium Ion Batteries. , 2016, ACS applied materials & interfaces.

[36]  N. Mason,et al.  Qualitative observation of reversible phase change in astrochemical ethanethiol ices using infrared spectroscopy. , 2016, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[37]  Z. Deng,et al.  Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor , 2016, Scientific Reports.

[38]  Seung M. Oh,et al.  Na3 SbS4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[39]  Zachary D. Hood,et al.  An Air-Stable Na3 SbS4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure. , 2016, Angewandte Chemie.

[40]  Limin Wang,et al.  Vacancy‐Contained Tetragonal Na3SbS4 Superionic Conductor , 2016, Advanced science.

[41]  Gerbrand Ceder,et al.  Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na3PSe4 , 2016 .

[42]  Li-Min Wang,et al.  Na3PSe4: A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity , 2015 .

[43]  N. Lewis,et al.  Low Temperature Solution-Phase Deposition of SnS Thin Films , 2014 .

[44]  E. Černošková,et al.  Thermal properties and the structure of amorphous Sb2Se3 thin film , 2014, Journal of Thermal Analysis and Calorimetry.

[45]  J. J. Buckley,et al.  Facile dissolution of selenium and tellurium in a thiol–amine solvent mixture under ambient conditions , 2014 .

[46]  R. Brutchey,et al.  Alkahest for V2VI3 chalcogenides: dissolution of nine bulk semiconductors in a diamine-dithiol solvent mixture. , 2013, Journal of the American Chemical Society.

[47]  R. Ewing,et al.  Sb2Se3 under pressure , 2013, Scientific Reports.

[48]  F. Papadimitrakopoulos,et al.  Precursor and oxygen dependence of the unidirectional, seeded growth of CdSe nanorods. , 2012, Chemistry of materials : a publication of the American Chemical Society.

[49]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[50]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[51]  J. Ying,et al.  Highly Reactive Se Precursor for the Phosphine-Free Synthesis of Metal Selenide Nanocrystals , 2010 .

[52]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[53]  B. Parkinson,et al.  Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. , 2009, Journal of the American Chemical Society.

[54]  M. Kanatzidis,et al.  Cubic Gyroid Frameworks in Mesostructured Metal Selenides Created from Tetrahedral Zn2+, Cd2+, and In3+ Ions and the [SbSe4]3- Precursor , 2006 .

[55]  Y. Qian,et al.  A Novel Mild Route to Nanocrystalline Selenides at Room Temperature , 1999 .

[56]  M. Jansen,et al.  Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate , 1992 .

[57]  R. Zagler,et al.  Selenoantimonate: Darstellung und Struktur von Na3SbSe4, K3SbSe4 und [Ba(en)4]2[Ba(en)3](SbSe4)2/ Selenoantimonates(V): Preparation and Crystal Structure of Na3SbSe4, K3SbSe4 and [Ba(en)4]2[Ba(en)3](SbSe4)2 , 1989 .

[58]  Ralph G. Pearson,et al.  Absolute electronegativity and absolute hardness of Lewis acids and bases , 1985 .

[59]  H. Brown,et al.  A Study of Solvents for Sodium Borohydride and the Effect of Solvent and the Metal Ion on Borohydride Reductions1 , 1955 .

[60]  Li-Min Wang,et al.  Synthesis of cubic Na3SbS4 solid electrolyte with enhanced ion transport for all-solid-state sodium-ion batteries , 2018 .

[61]  D. L. Klayman,et al.  Reaction of selenium with sodium borohydride in protic solvents. A Facile Method for the introduction of selenium into organic molecules , 1973 .