Experimental and theoretical inspection of the phase-to-height relation in Fourier transform profilometry.

The measurement of an object's shape using projected fringe patterns needs a relation between the measured phase and the object's height. Among various methods, the Fourier transform profilometry proposed by Takeda and Mutoh [Appl. Opt.22, 3977-3982 (1983)] is widely used in the literature. Rajoub et al. have shown that the reference relation given by Takeda is erroneous [J. Opt. A. Pure Appl. Opt.9, 66-75 (2007)]. This paper follows from Rajoub's study. Our results for the phase agree with Rajoub's results for both parallel- and crossed-optical-axes geometries and for either collimated or noncollimated projection. Our two main results are: (i) we show experimental evidence of the error in Takeda's formula and (ii) we explain the error in Takeda's derivation and we show that Rajoub's argument concerning Takeda's error is not correct.

[1]  P. Alstrøm,et al.  Prevalence of weak turbulence in strongly driven surface ripples , 2000 .

[2]  F. Ursell,et al.  Mathematical aspects of trapping modes in the theory of surface waves , 1987, Journal of Fluid Mechanics.

[3]  Ichiro Fujita,et al.  Stereoscopic measurement of a fluctuating free surface with discontinuities , 2005 .

[4]  X. Su,et al.  An optical measurement of vortex shape at a free surface , 2002 .

[5]  F. Berryman,et al.  A theoretical comparison of three fringe analysis methods for determining the three-dimensional shape of an object in the presence of noise , 2003 .

[6]  D. Evans,et al.  The trapping of surface waves above a submerged, horizontal cylinder , 1985, Journal of Fluid Mechanics.

[7]  Sergey Nazarenko,et al.  Wave turbulence and intermittency , 2001 .

[8]  O. Phillips Spectral and statistical properties of the equilibrium range in wind-generated gravity waves , 1985, Journal of Fluid Mechanics.

[9]  D. Evans,et al.  Trapped waves over symmetric thin bodies , 1991, Journal of Fluid Mechanics.

[10]  P. Mciver,et al.  ON UNIQUENESS AND TRAPPED MODES IN THE WATER-WAVE PROBLEM FOR A SURFACE-PIERCING AXISYMMETRIC BODY , 1997 .

[11]  A. Kolmogorov,et al.  The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[12]  Xianyu Su,et al.  Reliability-guided phase unwrapping algorithm: a review ☆ , 2004 .

[13]  V. Pagneux Revisiting the edge resonance for Lamb waves in a semi-infinite plate , 2006 .

[14]  Xianyu Su,et al.  Fourier transform profilometry:: a review , 2001 .

[15]  N. Mordant Are there waves in elastic wave turbulence? , 2008, Physical Review Letters.

[16]  P. Cobelli,et al.  Experimental observation of trapped modes in a water wave channel , 2009 .

[17]  E. Zappa,et al.  Comparison of eight unwrapping algorithms applied to Fourier-transform profilometry , 2008 .

[18]  David R. Burton,et al.  A new model for measuring object shape using non-collimated fringe-pattern projections , 2007 .

[19]  Wenjing Chen,et al.  ERROR CAUSED BY SAMPLING IN FOURIER TRANSFORM PROFILOMETRY , 1999 .

[20]  Alan C. Newell,et al.  Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schro¨dinger equation , 1992 .

[21]  Jiang Yi,et al.  Modified Fourier transform profilometry for the measurement of 3-D steep shapes , 1997 .

[22]  M. Takeda,et al.  Fourier transform profilometry for the automatic measurement of 3-D object shapes. , 1983, Applied optics.

[23]  M. Berry,et al.  Wavefront dislocations in the Aharonov-Bohm effect and its water wave analogue , 1980 .

[24]  Paul Pynsent,et al.  The effect of windowing in Fourier transform profilometry applied to noisy images , 2004 .

[25]  M. J. Lighthill,et al.  The eigenvalues of ∇2u + λu=0 when the boundary conditions are given on semi-infinite domains , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  C. T. Chan,et al.  Refraction of water waves by periodic cylinder arrays. , 2005, Physical review letters.

[27]  C. Cox,et al.  Measuring the two-dimensional structure of a wavy water surface optically: A surface gradient detector , 1994 .

[28]  D. Evans,et al.  Integral equations for a class of problems concerning obstacles in waveguides , 1992, Journal of Fluid Mechanics.

[29]  M. Gharib,et al.  Experimental studies of vortex disconnection and connection at a free surface , 1996, Journal of Fluid Mechanics.

[30]  Andrea Prosperetti,et al.  Ensemble phase‐averaged equations for bubbly flows , 1994 .

[31]  Xianyu Su,et al.  Fourier transform profilometry based on a projecting-imaging model. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  Jingang Zhong,et al.  Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry. , 2004, Applied optics.

[33]  M. Gharib,et al.  Optical mapping of fluid density interfaces: Concepts and implementations , 1996 .

[34]  Xianyu Su,et al.  Method for eliminating zero spectrum in Fourier transform profilometry , 2005 .

[35]  J. N. Newman,et al.  Wave diffraction by a long array of cylinders , 1997, Journal of Fluid Mechanics.

[36]  Ralph Savelsberg,et al.  Experiments on free-surface turbulence , 2009, Journal of Fluid Mechanics.

[37]  Lin Chi-Fang,et al.  A new approach to high precision 3-D measuring system , 1999 .

[38]  D. V. Evans,et al.  Trapping and Near-Trapping by Arrays of Cylinders in Waves , 1999 .

[39]  W. Goldburg,et al.  Turbulence in a free surface. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  M. McIver,et al.  Trapped modes supported by submerged obstacles , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[41]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[42]  L. Mysak,et al.  Waves in the ocean , 1978 .

[43]  Dario Ambrosini,et al.  Contouring of artwork surface by fringe projection and FFT analysis , 2000 .

[44]  C. Retzler Trapped modes : an experimental investigation , 2001 .

[45]  K. Hasselmann On the non-linear energy transfer in a gravity wave spectrum Part 2. Conservation theorems; wave-particle analogy; irrevesibility , 1963, Journal of Fluid Mechanics.

[46]  D. Evans,et al.  An example of non–uniqueness in the two–dimensional linear water–wave problem involving a submerged body , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[47]  Ralph Savelsberg,et al.  Measurement of the gradient field of a turbulent free surface , 2006 .

[48]  P. Mciver TRAPPING OF SURFACE WATER WAVES BY FIXED BODIES IN A CHANNEL , 1991 .

[49]  Ashis Bhattacharjee,et al.  Interaction of Shear-Alfven Wave Packets: Implication for Weak Magnetohydrodynamic Turbulence in Astrophysical Plasmas , 1996 .

[50]  P. McIver,et al.  Wave interaction with arrays of structures , 2002 .

[51]  F. Ursell,et al.  Trapping modes in the theory of surface waves , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[52]  R. Johnson Edge waves: theories past and present , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[53]  Wright,et al.  Imaging of intermittency in ripple-wave turbulence , 1997, Science.

[54]  A. Maurel,et al.  Global measurement of water waves by Fourier transform profilometry , 2009 .

[55]  D. V. Evans,et al.  Trapped modes in open channels , 1991, Journal of Fluid Mechanics.

[56]  Wright,et al.  Diffusing light photography of fully developed isotropic ripple turbulence. , 1996, Physical review letters.

[57]  D. V. Evans,et al.  Trapped modes about multiple cylinders in a channel , 1997, Journal of Fluid Mechanics.

[58]  Sergey Sorokin,et al.  A simple example of a trapped mode in an unbounded waveguide , 1995 .

[59]  Dana Dabiri,et al.  On the interaction of a vertical shear layer with a free surface , 2003, Journal of Fluid Mechanics.

[60]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[61]  Steve Cochard,et al.  Tracking the free surface of time-dependent flows: image processing for the dam-break problem , 2007 .

[62]  Interaction of a vortex ring with the free surface of an ideal fluid , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[63]  P. Mciver Trapped modes in the water-wave problem for a freely floating structure , 2006, Journal of Fluid Mechanics.

[64]  Bing Zhao,et al.  Discussion on spatial resolution and sensitivity of Fourier transform fringe detection , 2000 .

[65]  S. Guenneau,et al.  Broadband cylindrical acoustic cloak for linear surface waves in a fluid. , 2008, Physical review letters.

[66]  W. Water,et al.  Turbulent parametric surface waves , 2009 .

[67]  A. Boudaoud,et al.  Observation of wave turbulence in vibrating plates. , 2008, Physical review letters.

[68]  M. Fink,et al.  One-Channel Time Reversal of Elastic Waves in a Chaotic 2D-Silicon Cavity , 1997 .

[69]  I Grant,et al.  Topographical measurements of water waves using the projection moire method. , 1990, Applied optics.

[70]  Sergio Rica,et al.  Weak turbulence for a vibrating plate: can one hear a Kolmogorov spectrum? , 2006, Physical review letters.

[71]  K. Hasselmann On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory , 1962, Journal of Fluid Mechanics.

[72]  B. M. Fulk MATH , 1992 .

[74]  F. Ursell,et al.  Edge waves on a sloping beach , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[75]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[76]  Scattering of dislocated wave fronts by vertical vorticity and the Aharonov-Bohm effect. I. Shallow water. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[77]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[78]  James Shipman,et al.  Wave Motion , 2006 .

[79]  C. M. Linton,et al.  Embedded trapped modes in water waves and acoustics , 2007 .

[80]  M. Lalor,et al.  A new phase-to-height model for measuring object shape using collimated projections of structured light , 2005 .

[81]  Peter J. Bryanston-Cross,et al.  Studies of Fourier transform profilometry , 1994, Electronic Imaging.

[82]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[83]  Eric Falcon,et al.  Observation of gravity-capillary wave turbulence. , 2007, Physical review letters.

[84]  W. Willmarth,et al.  Turbulent structure in free-surface jet flows , 1995, Journal of Fluid Mechanics.

[85]  P. Mciver,et al.  Trapped modes in an axisymmetric water-wave problem , 1997 .

[86]  Chih-Yang Lin,et al.  A new approach to high precision 3-D measuring system , 1999, Image Vis. Comput..

[87]  R. Porter,et al.  Trapping of waves by a submerged elliptical torus , 2002, Journal of Fluid Mechanics.

[88]  Paul A. Martin,et al.  Trapping of water waves by submerged plates using hypersingular integral equations , 1995, Journal of Fluid Mechanics.

[89]  D. V. Evans,et al.  Existence theorems for trapped modes , 1994, Journal of Fluid Mechanics.

[90]  Gregory Falkovich,et al.  Kolmogorov Spectra of Turbulence I , 1992 .

[91]  V. L’vov,et al.  Bottleneck crossover between classical and quantum superfluid turbulence , 2006, nlin/0612018.

[92]  D. Huntley,et al.  Field Observations of Edge Waves , 1973, Nature.

[93]  Krzysztof Patorski,et al.  Handbook of the moiré fringe technique , 1993 .

[94]  Kartashova,et al.  Weakly nonlinear theory of finite-size effects in resonators. , 1994, Physical review letters.

[95]  Maureen McIver,et al.  An example of non-uniqueness in the two-dimensional linear water wave problem , 1996, Journal of Fluid Mechanics.

[96]  Wenjing Chen,et al.  Improved Fourier-transform profilometry. , 2007, Applied optics.

[97]  D. V. Evans,et al.  Near-trapping of waves by circular arrays of vertical cylinders , 1997 .

[98]  Andrew G. Glen,et al.  APPL , 2001 .

[99]  Xinhua Hu,et al.  Superlensing effect in liquid surface waves. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  J. Westerweel Experiments in Fluids , 2000 .

[101]  Xin Zhang An algorithm for calculating water surface elevations from surface gradient image data , 1996 .

[102]  C. Linton,et al.  Handbook of Mathematical Techniques for Wave/Structure Interactions , 2001 .

[103]  S. Lukaschuk,et al.  Gravity wave turbulence in a laboratory flume. , 2006, Physical review letters.

[104]  David R. Burton,et al.  Eliminating the zero spectrum in Fourier transform profilometry using a two-dimensional continuous wavelet transform , 2006 .

[105]  D. V. Evans,et al.  Trapped modes in two-dimensional waveguides , 1991, Journal of Fluid Mechanics.

[106]  Cho Jui Tay,et al.  Contour measurement by fibre optic fringe projection and Fourier transform analysis , 1995 .

[107]  A. Craik THE ORIGINS OF WATER WAVE THEORY , 2004 .

[108]  C. M. Linton,et al.  The existence of Rayleigh–Bloch surface waves , 2002, Journal of Fluid Mechanics.

[109]  A. Hall Applied Optics. , 2022, Science.

[110]  A weak turbulence theory for incompressible magnetohydrodynamics , .

[111]  Wenjing Chen,et al.  Dynamic 3-D shape measurement method based on FTP , 2001 .

[112]  Alain H. Clément,et al.  Wave propagation through arrays of unevenly spaced vertical piles , 2004 .

[113]  Trapping structures in the three-dimensional water-wave problem , 2003, Journal of Fluid Mechanics.