Alternate characterization technique for static random-access memory static noise margin determination

The cell static noise margin (SNM) is widely used as a stability criterion for static random-access memory cells design. This parameter is typically determined through electrical simulations since direct experimental characterization of SNM is not achievable. In this work, we present a methodology that provides an indirect measurement of the SNM on a per-cell basis for six-transistor SRAMs. It is based on combining an Adaptive Neuro-Fuzzy Inference System (ANFIS) with circuit-level cell experimentally measurable parameters as input variables to the tool. We show that it is possible to obtain the SNM for individual memory cells using the same experimental setup and data than that required for shmoo plot measurements. Results confirm that the SNM can be experimentally estimated with a relative error compared with electrical simulations that is below 0.5%. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  Rodrigo Picos,et al.  Predictive test strategy for CMOS RF mixers , 2009, Integr..

[2]  David Blaauw,et al.  A black box method for stability analysis of arbitrary SRAM cell structures , 2010, 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010).

[3]  Seong-Ook Jung,et al.  Sensing margin trend with technology scaling in MRAM , 2011, Int. J. Circuit Theory Appl..

[4]  W. Dehaene,et al.  Read Stability and Write-Ability Analysis of SRAM Cells for Nanometer Technologies , 2006, IEEE Journal of Solid-State Circuits.

[5]  Doris Schmitt-Landsiedel,et al.  A 65 nm test structure for SRAM device variability and NBTI statistics , 2009, ESSDERC 2009.

[6]  S. Kosonocky,et al.  Fluctuation limits & scaling opportunities for CMOS SRAM cells , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[7]  C. Radens,et al.  A Sub-600-mV, Fluctuation Tolerant 65-nm CMOS SRAM Array With Dynamic Cell Biasing , 2008, IEEE Journal of Solid-State Circuits.

[8]  Juan Hinojosa,et al.  Fuzzy logic technique for accurate analog circuits macromodel sizing , 2010 .

[9]  Y. Toyoshima,et al.  Direct evaluation of DC characteristic variability in FinFET SRAM Cell for 32 nm node and beyond , 2007, 2007 IEEE International Electron Devices Meeting.

[10]  Gerard N. Stenbakken,et al.  Test-point selection and testability measures via QR factorization of linear models , 1987, IEEE Transactions on Instrumentation and Measurement.

[11]  Jaume Segura,et al.  Static and dynamic stability improvement strategies for 6T CMOS low-power SRAMs , 2010, 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010).

[12]  Abhijit Chatterjee,et al.  Prediction of analog performance parameters using fast transienttesting , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[13]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[14]  C. Wann,et al.  SRAM cell design for stability methodology , 2005, IEEE VLSI-TSA International Symposium on VLSI Technology, 2005. (VLSI-TSA-Tech)..

[15]  Klaus-Robert Müller,et al.  Asymptotic statistical theory of overtraining and cross-validation , 1997, IEEE Trans. Neural Networks.

[16]  Alkis A. Hatzopoulos,et al.  Improved analogue fault coverage estimation using probabilistic analysis , 2010 .

[17]  H. Kato,et al.  SRAM cell stability under the influence of parasitic resistances and data holding voltage as a stability prober , 1997 .

[18]  E. Seevinck,et al.  Static-noise margin analysis of MOS SRAM cells , 1987 .

[19]  Borivoje Nikolic,et al.  Large-Scale SRAM Variability Characterization in 45 nm CMOS , 2009, IEEE Journal of Solid-State Circuits.