Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics.

While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices.

[1]  Albert Polman,et al.  Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells. , 2015, Nano letters.

[2]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[3]  M. Foldyna,et al.  Silicon nanowire solar cells grown by PECVD , 2012 .

[4]  E. Schiff Low-mobility solar cells: a device physics primer with application to amorphous silicon , 2003 .

[5]  K. L. Chopra,et al.  Amorphous Silicon Solar Cells , 1983 .

[6]  Jeffrey C. Grossman,et al.  Structural origins of intrinsic stress in amorphous silicon thin films , 2012 .

[7]  Shui-Tong Lee,et al.  Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture. , 2011, Journal of the American Chemical Society.

[8]  Rusli,et al.  High efficiency silicon nanohole/organic heterojunction hybrid solar cell , 2014 .

[9]  Christophe Ballif,et al.  Light-induced Voc increase and decrease in high-efficiency amorphous silicon solar cells , 2014 .

[10]  S. A. Shahahmadi,et al.  Amorphous Silicon Single-Junction Thin-Film Solar Cell Exceeding 10% Efficiency by Design Optimization , 2012 .

[11]  F. Ross,et al.  Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres. , 2012, ACS nano.

[12]  Tadachika Nakayama,et al.  Characterization of light absorption in thin-film silicon with periodic nanohole arrays. , 2013, Optics express.

[13]  J. Rand,et al.  Silicon Nanowire Solar Cells , 2007 .

[14]  M. Zeman,et al.  High pressure processing of hydrogenated amorphous silicon solar cells: Relation between nanostructure and high open-circuit voltage , 2015 .

[15]  Y. Akimov,et al.  Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. , 2009, Optics express.

[16]  The role of high work-function metallic nanodots on the performance of a-Si:H solar cells: offering ohmic contact to light trapping. , 2010, ACS nano.

[17]  W. V. Sark,et al.  Excellent crystalline silicon surface passivation by amorphous silicon irrespective of the technique used for chemical vapor deposition , 2011 .

[18]  Kazuo Morigaki,et al.  Hydrogenated Amorphous Silicon , 2014 .

[19]  Xiao Wei Sun,et al.  Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications. , 2011, Optics letters.

[20]  M. Foldyna,et al.  High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires , 2013 .

[21]  R. Street,et al.  Hydrogenated amorphous silicon: Index , 1991 .

[22]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[23]  Jianyong Ouyang,et al.  PEDOT:PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells , 2011 .

[24]  Zongfu Yu,et al.  Hybrid silicon nanocone-polymer solar cells. , 2012, Nano letters.

[25]  R. Biswas,et al.  Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector , 2010 .

[26]  Xin Wang,et al.  High-performance silicon nanohole solar cells. , 2010, Journal of the American Chemical Society.

[27]  Yimin Xuan,et al.  Role of surface recombination in affecting the efficiency of nanostructured thin-film solar cells. , 2013, Optics express.

[28]  S. Guha,et al.  Hole-mobility limit of amorphous silicon solar cells , 2006 .

[29]  Yi Cui,et al.  High‐Efficiency Amorphous Silicon Solar Cell on a Periodic Nanocone Back Reflector , 2012 .

[30]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[31]  Bo-Yu Huang,et al.  Characteristics of large‐scale nanohole arrays for thin‐silicon photovoltaics , 2014 .

[32]  Zhiyong Fan,et al.  Efficient light absorption with integrated nanopillar/nanowell arrays for three-dimensional thin-film photovoltaic applications. , 2013, ACS nano.

[33]  Martin Steglich,et al.  Core–shell heterojunction solar cells on silicon nanowire arrays , 2012 .

[34]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[35]  Hole-mobility-limiting atomic structures in hydrogenated amorphous silicon , 2014 .

[36]  Christophe Ballif,et al.  Comparison of amorphous silicon absorber materials: Light-induced degradation and solar cell efficiency , 2013 .

[37]  E. Schiff Hole Mobilities and the Physics of Amorphous Silicon Solar Cells , 2006 .

[38]  R. Osgood,et al.  Dielectric particle and void resonators for thin film solar cell textures. , 2011, Optics express.

[39]  Gang Chen,et al.  Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. , 2010, Nano letters.

[40]  Emmanuel Drouard,et al.  Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells. , 2012, Optics express.