Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes

We propose a novel approach to model serially dependent positive-valued variables which realize a non-trivial proportion of zero outcomes. This is a typical phenomenon in financial time series observed at high frequencies, such as cumulated trading volumes. We introduce a flexible point-mass mixture distribution and develop a semiparametric specification test explicitly tailored for such distributions. Moreover, we propose a new type of multiplicative error model (MEM) based on a zero-augmented distribution, which incorporates an autoregressive binary choice component and thus captures the (potentially different) dynamics of both zero occurrences and of strictly positive realizations. Applying the proposed model to high-frequency cumulated trading volumes of both liquid and illiquid NYSE stocks, we show that the model captures the dynamic and distributional properties of the data well and is able to correctly predict future distributions.

[1]  Martin Odening,et al.  Systemic Weather Risk and Crop Insurance: The Case of China , 2013 .

[2]  Taylor Sandra,et al.  Hypothesis tests for point-mass mixture data with application to 'omics data with many zero values. , 2009 .

[3]  Jeremy Berkowitz Testing Density Forecasts, With Applications to Risk Management , 2001 .

[4]  H. Müller,et al.  Kernel estimation of regression functions , 1979 .

[5]  Mark Podolskij,et al.  Preaveraging-Based Estimation of Quadratic Variation in the Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence , 2013 .

[6]  U. Horst,et al.  Efficiency and equilibria in games of optimal derivative design , 2011, 1107.0839.

[7]  L. Bauwens,et al.  The Logarithmic Acd Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks , 2000 .

[8]  Jianqing Fan,et al.  On automatic boundary corrections , 1997 .

[9]  Giovanni De Luca,et al.  Regime-switching Pareto distributions for ACD models , 2006, Comput. Stat. Data Anal..

[10]  Wolfgang Karl Härdle,et al.  Nonparametric Estimation of Risk-Neutral Densities , 2010 .

[11]  N. Hjort,et al.  Nonparametric Density Estimation with a Parametric Start , 1995 .

[12]  Thomas Post,et al.  Stochastic Mortality, Subjective Survival Expectations, and Individual Saving Behavior , 2010 .

[13]  P. Schotman,et al.  Price Discovery in Fragmented Markets , 2003 .

[14]  Nikolaus Hautsch,et al.  The Impact of Macroeconomic News on Quote Adjustments, Noise, and Informational Volatility , 2010 .

[15]  V. Singh,et al.  Three‐parameter discontinuous distributions for hydrological samples with zero values , 2005 .

[16]  Fabrizio Cipollini,et al.  Vector Multiplicative Error Models:Representation and Inference , 2006 .

[17]  Fabrizio Cipollini,et al.  Intra-Daily Volume Modeling and Prediction for Algorithmic Trading , 2010 .

[18]  Ulrich Horst,et al.  Illiquidity and Derivative Valuation , 2008, 0901.0091.

[19]  R. Engle,et al.  A Multiple Indicators Model for Volatility Using Intra-Daily Data , 2003 .

[20]  B. Werker,et al.  Semiparametric Duration Models , 2004 .

[21]  O. Mitchell,et al.  How Ordinary Consumers Make Complex Economic Decisions: Financial Literacy and Retirement Readiness , 2009 .

[22]  Szymon Borak,et al.  Models for Heavy-tailed Asset Returns , 2010 .

[23]  Markku Lanne,et al.  A Mixture Multiplicative Error Model for Realized Volatility , 2006 .

[24]  Luc Bauwens,et al.  Département des Sciences Économiques de l'Université catholique de Louvain Modelling Financial High Frequency Data Using Point Processes , 2019 .

[25]  Dieter Nautz,et al.  Why Do Financial Market Experts Misperceive Future Monetary Policy Decisions? , 2010 .

[26]  Nikolaus Hautsch,et al.  Capturing Common Components in High-Frequency Financial Time Series: A Multivariate Stochastic Multiplicative Error Model , 2008 .

[27]  Wolfgang Härdle,et al.  Volatility Investing with Variance Swaps , 2010 .

[28]  R. Engle New Frontiers for Arch Models , 2002 .

[29]  Yanqin Fan Testing the Goodness of Fit of a Parametric Density Function by Kernel Method , 1994, Econometric Theory.

[30]  Dieter Nautz,et al.  Monetary transmission right from the start: The (dis)connection between the money market and the ECB's main refinancing rates , 2010 .

[31]  Nikolaus Hautsch,et al.  Bayesian Inference in a Stochastic Volatility Nelson–Siegel Model , 2012, Comput. Stat. Data Anal..

[32]  Sandra Taylor,et al.  Hypothesis tests for point-mass mixture data with application to 'omics data with many zero values. , 2009, Statistical applications in genetics and molecular biology.

[33]  C. Morris,et al.  A Comparison of Alternative Models for the Demand for Medical Care , 1983 .

[34]  Eugene F. Schuster,et al.  Incorporating support constraints into nonparametric estimators of densities , 1985 .

[35]  A. Lo,et al.  An Econometric Analysis of Nonsynchronous Trading , 1989 .

[36]  S. Draus Does Inter-Market Competition Lead to Less Regulation?* , 2010 .

[37]  T. Pirvu,et al.  On securitization, market completion and equilibrium risk transfer , 2010 .

[38]  Shunpu Zhang A note on the performance of the gamma kernel estimators at the boundary , 2010 .

[39]  W. Härdle,et al.  Prognose mit nichtparametrischen Verfahren , 2010 .

[40]  Maureen O'Hara,et al.  What’s Not There: The Odd-Lot Bias in TAQ Data , 2011 .

[41]  Agnieszka Janek,et al.  C P ] 8 O ct 2 01 0 FX smile in the Heston model 1 , 2010 .

[42]  W. Härdle,et al.  Uniform Confidence Bands for Pricing Kernels , 2010 .

[43]  A. Brockwell,et al.  Universal Residuals: A Multivariate Transformation. , 2007, Statistics & probability letters.

[44]  Nikolaus Hautsch Assessing the Risk of Liquidity Suppliers on the Basis of Excess Demand Intensities , 2003 .

[45]  Maureen O'Hara,et al.  Time and the Process of Security Price Adjustment , 1992 .

[46]  Krzysztof Burnecki,et al.  Building loss models , 2010 .

[47]  Luc Bauwens,et al.  A Comparison of Financial Duration Models Via Density Forecast , 2004 .

[48]  M. Burda,et al.  Payroll Taxes, Social Insurance and Business Cycles , 2010, SSRN Electronic Journal.

[49]  Giampiero M. Gallo,et al.  Mixture Processes for Financial Intradaily Durations , 2004 .

[50]  Yanqin Fan GOODNESS-OF-FIT TESTS BASED ON KERNEL DENSITY ESTIMATORS WITH FIXED SMOOTHING PARAMETERS , 1998, Econometric Theory.

[51]  Markus Reiß,et al.  Estimation of the characteristics of a Lévy process observed at arbitrary frequency , 2010 .

[52]  Song-xi Chen,et al.  Probability Density Function Estimation Using Gamma Kernels , 2000 .

[53]  Ruey S. Tsay,et al.  A nonlinear autoregressive conditional duration model with applications to financial transaction data , 2001 .

[54]  Winfried Pohlmeier,et al.  Modelling financial transaction price movements: a dynamic integer count data model , 2006 .

[55]  Fang Yao,et al.  Aggregate Hazard Function in Price-Setting: A Bayesian Analysis Using Macro Data , 2010 .

[56]  Nikolaus Hautsch,et al.  Modelling Irregularly Spaced Financial Data: Theory and Practice of Dynamic Duration Models , 2004 .

[57]  Raffaele Fiocco The Optimal Institutional Design of Vertically Related Markets with Unknown Upstream Costs , 2013 .

[58]  L. Shenton,et al.  Omnibus test contours for departures from normality based on √b1 and b2 , 1975 .

[59]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[60]  Marcelo Fernandes,et al.  Central limit theorem for asymmetric kernel functionals , 2005 .

[61]  Michael McAleer,et al.  Asymptotic and Finite Sample Properties of the QMLE for the Log-ACD Model: Application to Australian Stocks* , 2007 .

[62]  Joachim Grammig,et al.  Nonparametric specification tests for conditional duration models , 2005 .

[63]  Volker Krätschmer,et al.  Central Limit Theorems for Law-Invariant Coherent Risk Measures , 2012, Journal of Applied Probability.

[64]  Tony Lancaster,et al.  The Econometric Analysis of Transition Data. , 1992 .

[65]  Peter Malec,et al.  Nonparametric Kernel Density Estimation Near the Boundary , 2013, Comput. Stat. Data Anal..

[66]  Vladimir Panov,et al.  Non-Gaussian Component Analysis: New Ideas, New Proofs, New Applications , 2010 .

[67]  M. C. Jones,et al.  Simple boundary correction for kernel density estimation , 1993 .

[68]  Raffaele Fiocco,et al.  The optimal industry structure in a vertically related market , 2010 .

[69]  J. Doornik,et al.  An Omnibus Test for Univariate and Multivariate Normality , 2008 .

[70]  W. Härdle,et al.  Local Adaptive Multiplicative Error Models for High- Frequency Forecasts , 2012 .

[71]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[72]  Tijmen R. Daniëls,et al.  Characterising equilibrium selection in global games with strategic complementarities , 2013, J. Econ. Theory.

[73]  Jeffrey R. Russell,et al.  A Discrete-State Continuous-Time Model of Financial Transactions Prices and Times , 2005 .

[74]  O. Scaillet,et al.  Local Multiplicative Bias Correction for Asymmetric Kernel Density Estimators , 2003 .

[75]  Robert F. Engle,et al.  The Econometrics of Ultra-High Frequency Data , 1996 .

[76]  S. Manganelli Duration, Volume and Volatility Impact of Trades , 2002, SSRN Electronic Journal.

[77]  R. Berk,et al.  Continuous Univariate Distributions, Volume 2 , 1995 .

[78]  Maureen O'Hara,et al.  Is Market Fragmentation Harming Market Quality? , 2009 .

[79]  Bnp Paribas,et al.  Dynamics of trade-by-trade price movements : decomposition and models , 1998 .

[80]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .