Cooperative self-organization of afferent and lateral connections in cortical maps

A self-organizing neural network model called LISSOM for the synergetic development of afferent and lateral connections in cortical feature maps is presented. The weight adaptation process is purely activity-dependent, unsupervised, and local. The afferent input weights self-organize into a topological map of the input space. At the same time, the lateral interconnection weights adapt, and a unique lateral interaction profile develops for each neuron. Weak lateral connections die off, leaving a pattern of connections that represents the significant long-term correlations of activity on the feature map. LISSOM demonstrates how self-organization can bootstrap based on input information only, without global supervision or predetermined lateral interaction. The model gives rise to a nontopographically organized lateral connectivity similar to that observed in the mammalian neocortex as illustrated by a LISSOM model of ocular dominance column formation in the primary visual cortex. In addition, LISSOM can potentially account for the development of multiple maps of different modalities on the same undifferentiated cortical architecture.

[1]  Joel L. Davis,et al.  An Introduction to Neural and Electronic Networks , 1995 .

[2]  Jeff W. Lichtman,et al.  Principles of neural development , 1985 .

[3]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[4]  E. Callaway,et al.  Emergence and refinement of clustered horizontal connections in cat striate cortex , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  Stephen Grossberg,et al.  Physiological Interpretation of the Self-Organizing Map Algorithm , 1994 .

[6]  Christoph von der Malsburg,et al.  Network self-organization , 1990 .

[7]  R. Rohwer Order out of Chaos: Man's New Dialogue with Nature , 1986 .

[8]  J. Kaas,et al.  Reorganization of mammalian somatosensory cortex following peripheral nerve injury , 1982, Trends in Neurosciences.

[9]  M. Cynader,et al.  Somatosensory cortical map changes following digit amputation in adult monkeys , 1984, The Journal of comparative neurology.

[10]  W. Singer,et al.  Development of horizontal intrinsic connections in cat striate cortex , 2004, Experimental Brain Research.

[11]  G. K. Noorden,et al.  Binocular vision and ocular motility;: Theory and management of strabismus , 1974 .

[12]  E. Callaway,et al.  Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[13]  P König,et al.  Formation of cortical cell assemblies. , 1990, Cold Spring Harbor symposia on quantitative biology.

[14]  Geoffrey J. Goodhill Topography and ocular dominance can arise from distributed patterns of activity , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[15]  I. Divac Cortical circuits: Synaptic organization of the cerebral cortex. Structure, function and theory by Edward L. White, Birkäuser, 1989. Sw. fr. 88.00 (xvi + 223 pages) ISBN 3 7643 3402 9 , 1990, Trends in Neurosciences.

[16]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[17]  T. Powell,et al.  The intrinsic, association and commissural connections of area 17 on the visual cortex. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[18]  D. Purves Body and Brain: A Trophic Theory of Neural Connections , 1988 .

[19]  Shigeru Tanaka,et al.  Theory of self-organization of cortical maps: Mathematical framework , 1990, Neural Networks.

[20]  Teuvo Kohonen,et al.  Things you haven't heard about the self-organizing map , 1993, IEEE International Conference on Neural Networks.

[21]  É. D. L. Tour,et al.  Nouvelles observations concernant l’action du laurylsulfate de sodium sur la paroi et la membrane d’E. coli , 1965 .

[22]  Teuvo Kohonen,et al.  Physiological interpretationm of the self-organizing map algorithm , 1993 .

[23]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[24]  Kenneth D. Miller,et al.  The Role of Constraints in Hebbian Learning , 1994, Neural Computation.

[25]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[26]  J. S. McCasland,et al.  Cortical local circuit axons do not mature after early deafferentation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. L. Meyer,et al.  Retinotopically inappropriate synapses of subnormal density formed by surgically misdirected optic fibers in goldfish tectum. , 1988, Brain research.

[28]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[29]  W. Singer,et al.  Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. , 1992, Science.

[30]  R Bäuerle [Vibrotactile information transfer using sequences of binary signals]. , 1974, Kybernetik.

[31]  M. Murray,et al.  Target regulation of synaptic number in the compressed retinotectal projection of goldfish , 1982, The Journal of comparative neurology.

[32]  K. Obermayer,et al.  Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[33]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[34]  T. Kohonen Analysis of a simple self-organizing process , 1982, Biological Cybernetics.

[35]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  K. Miller Development of orientation columns via competition between ON- and OFF-center inputs. , 1992, Neuroreport.

[37]  D. Prince,et al.  Functional Properties of Neocortical Neurons , 2022 .

[38]  W. Singer,et al.  Squint Affects Synchronization of Oscillatory Responses in Cat Visual Cortex , 1993, The European journal of neuroscience.

[39]  B. Finlay,et al.  Compensation for population size mismatches in the hamster retinotectal system: Alterations in the organization of retinal projections , 1991, Visual Neuroscience.

[40]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[41]  H. Burian,et al.  Binocular vision and ocular motility , 1975 .

[42]  M. Miyashita,et al.  A mathematical model for the self-organization of orientation columns in visual cortex. , 1992, Neuroreport.

[43]  Teuvo Kohonen,et al.  Physiological interpretation of the Self-Organizing Map algorithm , 1993, Neural Networks.

[44]  P. Rakić,et al.  Synaptogenesis in visual cortex of normal and preterm monkeys: evidence for intrinsic regulation of synaptic overproduction. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[45]  E. G. Jones,et al.  The distribution of intrinsic cortical axons in area 3b of cat primary somatosensory cortex , 2004, Experimental Brain Research.

[46]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[47]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[48]  T. Wiesel,et al.  Lateral interactions in visual cortex. , 1990, Cold Spring Harbor symposia on quantitative biology.

[49]  H. Wigström,et al.  Physiological mechanisms underlying long-term potentiation , 1988, Trends in Neurosciences.

[50]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[51]  Risto Miikkulainen,et al.  Self-Organizing Process Based On Lateral Inhibition And Synaptic Resource Redistribution , 1991 .

[52]  A. Burkhalter,et al.  Development of local circuits in human visual cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  Vernon B. Mountcastle Neural Mechanisms in Somesthesis: Recent Progress and Future Problems , 1984 .

[54]  K D Miller,et al.  Experimental and theoretical studies of the organization of afferents to single orientation columns in visual cortex. , 1990, Cold Spring Harbor Symposia on Quantitative Biology.

[55]  R. L. Meyer,et al.  Optic synapse number but not density is constrained during regeneration onto surgically halved tectum in goldfish: HRP‐EM evidence that optic fibers compete for fixed numbers of postsynaptic sites on the tectum , 1988, The Journal of comparative neurology.

[56]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[57]  H. Ritter,et al.  A principle for the formation of the spatial structure of cortical feature maps. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[58]  L C Katz,et al.  Development of local circuits in mammalian visual cortex. , 1992, Annual review of neuroscience.