antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification
暂无分享,去创建一个
Kai Blin | Tilmann Weber | Hyun Uk Kim | Sang Yup Lee | Hernando G. Suarez Duran | Eriko Takano | Rainer Breitling | Thomas Wolf | Douglas A. Mitchell | Marnix H. Medema | Ekaterina Shelest | Satria A. Kautsar | Christopher J. Schwalen | Marc G. Chevrette | Xiaowen Lu | Emmanuel L. C. de los Santos | Mariana Nave | Jeroen S. Dickschat | R. Breitling | S. Lee | H. Kim | K. Blin | T. Weber | E. Takano | M. Medema | Thomas Wolf | E. Shelest | M. Chevrette | D. Mitchell | S. Kautsar | Xiaowen Lu | E. D. L. Santos | M. Nave | H. G. S. Duran | Mariana Nave
[1] Tilmann Weber,et al. The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production , 2016, Synthetic and systems biotechnology.
[2] Victor M. Markowitz,et al. IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites , 2015, mBio.
[3] Tilmann Weber,et al. The evolution of genome mining in microbes - a review. , 2016, Natural product reports.
[4] Kai Blin,et al. antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers , 2013, Nucleic Acids Res..
[5] Tilmann Weber,et al. In silico tools for the analysis of antibiotic biosynthetic pathways. , 2014, International journal of medical microbiology : IJMM.
[6] Michael A Fischbach,et al. Computational approaches to natural product discovery. , 2015, Nature chemical biology.
[7] Carlos Prieto,et al. NRPSsp: non-ribosomal peptide synthase substrate predictor , 2012, Bioinform..
[8] Christopher J. Schwalen,et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape , 2016, Nature chemical biology.
[9] Neetika Nath,et al. CASSIS and SMIPS: promoter-based prediction of secondary metabolite gene clusters in eukaryotic genomes , 2015, Bioinform..
[10] Jeroen S. Dickschat,et al. Bacterial terpene cyclases. , 2016, Natural product reports.
[11] Peter Man-Un Ung,et al. Automated genome mining for natural products , 2009, BMC Bioinformatics.
[12] Alexandre Renaux,et al. MicroScope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes , 2016, Nucleic Acids Res..
[13] Michael A. Skinnider,et al. An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products , 2015, Nature Communications.
[14] Heidi J. Imker,et al. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks. , 2015, Biochimica et biophysica acta.
[15] Kai Blin,et al. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters , 2015, Nucleic Acids Res..
[16] Kai Blin,et al. NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity , 2011, Nucleic Acids Res..
[17] Roy T. Fielding,et al. Principled design of the modern Web architecture , 2000, Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium.
[18] M. Bibb,et al. The use of a rare codon specifically during development? , 1991, Molecular microbiology.
[19] Chao Xie,et al. Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.
[20] Jurica Zucko,et al. Predicting substrate specificity of adenylation domains of nonribosomal peptide synthetases and other protein properties by latent semantic indexing , 2013, Journal of Industrial Microbiology & Biotechnology.
[21] Andreas Bechthold,et al. The Gene bldA, a Regulator of Morphological Differentiation and Antibiotic Production in Streptomyces , 2015, Archiv der Pharmazie.
[22] Kai Blin,et al. CRISPy-web: An online resource to design sgRNAs for CRISPR applications , 2016, Synthetic and systems biotechnology.
[23] Michael A. Skinnider,et al. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM) , 2015, Nucleic acids research.
[24] Minoru Kanehisa,et al. Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes. , 2007, Journal of molecular biology.
[25] Kai Blin,et al. The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery , 2017, Nucleic Acids Res..
[26] Robert D. Finn,et al. The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..
[27] K. Chater,et al. TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants. , 1991, Proceedings of the National Academy of Sciences of the United States of America.
[28] Carla S. Jones,et al. Minimum Information about a Biosynthetic Gene cluster. , 2015, Nature chemical biology.
[29] Bradley S Moore,et al. Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides , 2016, Nature Microbiology.
[30] J. Badger,et al. The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity , 2012, PloS one.
[31] Kai Blin,et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences , 2011, Nucleic Acids Res..
[32] Roger G. Linington,et al. Insights into Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene Clusters , 2014, Cell.
[33] Renzo Kottmann,et al. The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters , 2016, Nucleic Acids Res..
[34] Kai Blin,et al. plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters , 2016, bioRxiv.
[35] Roland J. Siezen,et al. Classification of the Adenylation and Acyl-Transferase Activity of NRPS and PKS Systems Using Ensembles of Substrate Specific Hidden Markov Models , 2013, PloS one.