Time-Dependent Many-Particle Simulation for Resonant Tunneling Diodes: Interpretation of an Analytical Small-Signal Equivalent Circuit

A full many-particle (beyond the mean-field approximation) electron quantum-transport simulator, which is named BITLLES, is used to analyze the transient current response of resonant tunneling diodes (RTDs). The simulations have been used to test an analytical (free-fitting parameters) small-signal equivalent circuit for RTDs under stable direct-current-biased conditions. The comparison provides an excellent agreement and furnishes a way to physically interpret each circuit element. In addition, a nonlinear novel RTD behavior in the negative differential conductance region has been established, i.e. asymmetric time constants in the RTD current response when high-low or low-high voltage steps are considered.

[1]  Timothy Boles,et al.  MMIC based phased array radar T/R modules , 2010, The 7th European Radar Conference.

[2]  P. Chahal,et al.  Unified AC model for the resonant tunneling diode , 2004, IEEE Transactions on Electron Devices.

[3]  Y. Blanter,et al.  Shot noise in mesoscopic conductors , 1999, cond-mat/9910158.

[4]  F. Buot Nonequilibrium Quantum Transport Physics in Nanosystems: Foundation of Computational Nonequilibrium Physics in Nanoscience and Nanotechnology , 2009 .

[5]  Simon Haykin,et al.  Communication Systems , 1978 .

[6]  X. Oriols,et al.  Quantum-trajectory approach to time-dependent transport in mesoscopic systems with electron-electron interactions. , 2007, Physical review letters.

[7]  Serge Luryi,et al.  Nonclassical devices in SOI: Genuine or copyright from III-V , 2007 .

[8]  Yun Zheng,et al.  Self-consistent transit-time model for a resonant tunnel diode , 2004, IEEE Transactions on Electron Devices.

[9]  O. Rozeau,et al.  High immunity to threshold voltage variability in undoped ultra-thin FDSOI MOSFETs and its physical understanding , 2008, 2008 IEEE International Electron Devices Meeting.

[10]  L. Esaki,et al.  Tunneling in a finite superlattice , 1973 .

[11]  J. Suñé,et al.  Many-particle Hamiltonian for open systems with full Coulomb interaction: Application to classical and quantum time-dependent simulations of nanoscale electron devices , 2009 .

[12]  Shawn Patrick Stapleton,et al.  Scattering parameter measurements of resonant tunneling diodes up to 40 GHz , 1995 .

[13]  T. C. L. G. Sollner,et al.  Fundamental oscillations up to 200 GHz in resonant tunneling diodes and new estimates of their maximum oscillation frequency from stationary‐state tunneling theory , 1988 .

[14]  X. Oriols,et al.  Computation of quantum electron transport with local current conservation using quantum trajectories , 2009 .

[15]  Chen,et al.  ac conductance of a double-barrier resonant tunneling system under a dc-bias voltage. , 1990, Physical review letters.

[16]  L. Esaki,et al.  Resonant tunneling in semiconductor double barriers , 1974 .

[17]  T. C. McGill,et al.  Oscillations up to 712 GHz in InAs/AlSb resonant‐tunneling diodes , 1991 .

[18]  Safumi Suzuki,et al.  Resonant Tunneling Diodes for Sub-Terahertz and Terahertz Oscillators , 2008 .

[19]  B. Majkusiak Resonant Tunneling Devices on SOI Basis , 2007 .

[20]  Serge Luryi,et al.  Frequency limit of double‐barrier resonant‐tunneling oscillators , 1985 .

[21]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[22]  Intrinsic cut off frequency of Si and GaAs based Resonant Tunneling Diodes , 2009, 2009 10th International Conference on Ultimate Integration of Silicon.

[23]  H.J. De Los Santos,et al.  An efficient HBT/RTD oscillator for wireless applications , 2001, IEEE Microwave and Wireless Components Letters.

[24]  Michael N. Feiginov,et al.  Displacement currents and the real part of high-frequency conductance of the resonant-tunneling diode , 2001 .

[25]  Buot Fa,et al.  High-frequency behavior of quantum-based devices: Equivalent-circuit, nonperturbative-response, and phase-space analyses. , 1993 .

[26]  D. Ferry,et al.  Transport in nanostructures , 1999 .

[27]  E A Poltoratsky,et al.  The dynamic nature of peculiarities of RTS static I-V characteristic , 2001 .

[28]  William R. Frensley,et al.  Quantum transport calculation of the small‐signal response of a resonant tunneling diode , 1987 .

[29]  S. Stapleton,et al.  Quantum capacitance of resonant tunneling diodes , 1991 .

[30]  H. C. Lin,et al.  Resonant tunneling diodes for multi-valued digital applications , 1994, Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94).

[31]  Hadis Morkoç,et al.  A small-signal equivalent-circuit model for GaAs-AlxGa1−xAs resonant tunneling heterostructures at microwave frequencies , 1987 .

[32]  M. Vinet,et al.  Bonded planar double-metal-gate NMOS transistors down to 10 nm , 2005, IEEE Electron Device Letters.

[33]  G. Ghibaudo,et al.  Performances Comparison of Si and GaAs Based Resonant Tunneling Diodes , 2008 .

[34]  T. C. L. G. Sollner,et al.  Effect of quasibound‐state lifetime on the oscillation power of resonant tunneling diodes , 1989 .

[35]  M. Büttiker Coherent and sequential tunneling in series barriers , 1988 .

[36]  Dwight L. Woolard,et al.  Equivalent circuit parameters of resonant tunneling diodes extracted from self-consistent Wigner-Poisson simulation , 2001 .

[37]  Didier Lippens,et al.  Direct evidence of the quasibound-state lifetime effect in resonant tunneling from impedance measurements , 1992 .

[38]  X. Cartoixà,et al.  Time-dependent boundary conditions with lead-sample Coulomb correlations: Application to classical and quantum nanoscale electron device simulators , 2010 .

[39]  Pinaki Mazumder,et al.  Digital circuit applications of resonant tunneling devices , 1998, Proc. IEEE.

[40]  Pinaki Mazumder,et al.  Resonant tunneling diodes: models and properties , 1998, Proc. IEEE.