Hille-Kneser-type criteria for second-order dynamic equations on time scales

We consider the pair of second-order dynamic equations, (r(t)(xΔ)γ)Δ + p(t)xγ(t) = 0 and (r(t)(xΔ)γ)Δ + p(t)xγσ(t) = 0, on a time scale , where γ > 0 is a quotient of odd positive integers. We establish some necessary and sufficient conditions for nonoscillation of Hille-Kneser type. Our results in the special case when involve the well-known Hille-Kneser-type criteria of second-order linear differential equations established by Hille. For the case of the second-order half-linear differential equation, our results extend and improve some earlier results of Li and Yeh and are related to some work of Došlý and Řehák and some results of Řehák for half-linear equations on time scales. Several examples are considered to illustrate the main results.

[1]  Wan-Tong Li,et al.  Positive solutions of second-order half-linear dynamic equations on time scales , 2004, Appl. Math. Comput..

[2]  Pavel Řehák,et al.  Half-linear dynamic equations on time scales: IVP and oscillatory properties , 2002 .

[3]  Samir H. Saker,et al.  Oscillation of nonlinear dynamic equations on time scales , 2004, Appl. Math. Comput..

[4]  Ondrej Doslý,et al.  A necessary and sufficient condition for oscillation of the Sturm--Liouville dynamic equation on time scales , 2002 .

[5]  Samir H. Saker,et al.  Oscillation Criteria for Second‐Order Nonlinear Dynamic Equations On Time Scales , 2003 .

[6]  Ravi P. Agarwal,et al.  Oscillation of Second Order Delay Dynamic Equations , 2005 .

[7]  E. Hille,et al.  Non-oscillation theorems , 1948 .

[8]  Elvan Akin-Bohner,et al.  Oscillation Properties of an Emden-Fowler Type Equation on Discrete Time Scales , 2003 .

[9]  Samir H. Saker,et al.  Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales , 2005 .

[10]  Samir H. Saker,et al.  Oscillation criteria of second-order half-linear dynamic equations on time scales , 2005 .

[11]  A. Peterson,et al.  Dynamic Equations on Time Scales: An Introduction with Applications , 2001 .

[12]  Ondřej Došlý,et al.  Half-linear differential equations , 2005 .

[13]  Martin Bohner,et al.  Oscillation criteria for perturbed nonlinear dynamic equations , 2004, Math. Comput. Model..

[14]  L. Erbe,et al.  OSCILLATION CRITERIA FOR SECOND ORDER LINEAR EQUATIONS ON A TIME SCALE , 2003 .

[15]  Xiaojing Yang Nonoscillation criteria for second-order nonlinear differential equations , 2002, Appl. Math. Comput..

[16]  J. Sugie,et al.  Oscillation constant of second-order non-linear self-adjoint differential equations , 2002 .

[17]  Ravi P. Agarwal,et al.  Discrete Oscillation Theory , 2005 .

[18]  Lynn Erbe,et al.  Positive solutions for a nonlinear differential equation on a measure chain , 2000 .

[19]  Samir H. Saker,et al.  Oscillation of second-order nonlinear neutral delay dynamic equations on time scales , 2006 .

[20]  Pavel Řehák,et al.  How the constants in Hille-Nehari theorems depend on time scales , 2006 .

[21]  Louis B. Rall,et al.  Nonlinear Functional Analysis and Applications , 1971 .

[22]  Lynn Erbe,et al.  Oscillation Results for Second-order Linear Equations on a Time Scale , 2002 .

[23]  Samir H. Saker,et al.  Boundedness of Solutions of Second-Order Forced Nonlinear Dynamic Equations , 2006 .

[24]  A. Peterson,et al.  Boundedness and oscillation for nonlinear dynamic equations on a time scale , 2003 .

[25]  Lynn Erbe,et al.  Oscillation criteria for second-order matrix dynamic equations on a time scale , 2002 .

[26]  Martin Bohner,et al.  Oscillation of Second Order Nonlinear Dynamic Equations on Time Scales , 2004 .

[27]  Martin Bohner,et al.  Oscillation criteria for a certain class of second order Emden-Fowler dynamic equations. , 2007 .

[28]  S. Hilger Analysis on Measure Chains — A Unified Approach to Continuous and Discrete Calculus , 1990 .

[29]  N. Yoshida,et al.  Nonoscillation Theorems for a Class of Quasilinear Differential Equations of Second-Order , 1995 .

[30]  C. Yeh,et al.  Sturmian comparison theorem for half-linear second-order differential equations , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[31]  M. Birkner,et al.  Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach , 2002 .

[32]  Billur Kaymakçalan,et al.  On a disconjugacy criterion for second order dynamic equations on time scales , 2002 .

[33]  Wassily Leontief,et al.  Mathematics in economics , 1954 .