Approximation of the incompressible Navier-Stokes equations using orthogonal subscale stabilization and pressure segregation on anisotropic finite element meshes
暂无分享,去创建一个
[1] A. Quarteroni,et al. Factorization methods for the numerical approximation of Navier-Stokes equations , 2000 .
[2] R. Codina. A stabilized finite element method for generalized stationary incompressible flows , 2001 .
[3] R. Codina. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .
[4] T. Apel,et al. Anisotropic mesh refinement in stabilized Galerkin methods , 1996 .
[5] David J. Silvester,et al. Stabilised bilinear—constant velocity—pressure finite elements for the conjugate gradient solution of the Stokes problem , 1990 .
[6] S. Turek. a Comparative Study of Time-Stepping Techniques for the Incompressible Navier-Stokes Equations: from Fully Implicit Non-Linear Schemes to Semi-Implicit Projection Methods , 1996 .
[7] Jim Douglas,et al. An absolutely stabilized finite element method for the stokes problem , 1989 .
[8] J. B. Perot,et al. An analysis of the fractional step method , 1993 .
[9] R. Codina. Pressure Stability in Fractional Step Finite Element Methods for Incompressible Flows , 2001 .
[10] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[11] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[12] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[13] Simona Perotto,et al. Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.
[14] Jie Shen,et al. Hopf bifurcation of the unsteady regularized driven cavity flow , 1991 .
[15] Ramesh Natarajan,et al. A numerical method for incompressible viscous flow simulation , 1992 .
[16] T. Apel,et al. Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem , 1998 .
[17] Pavel B. Bochev,et al. Analysis of Velocity-Flux First-Order System Least-Squares Principles for the Navier--Stokes Equations: Part I , 1998 .
[18] R. Codina. Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .
[19] L. Franca,et al. Error analysis of some Galerkin least squares methods for the elasticity equations , 1991 .
[20] J. Douglas,et al. Stabilized mixed methods for the Stokes problem , 1988 .
[21] A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .
[22] Miguel Cervera,et al. The intrinsic time for the streamline upwind/Petrov-Galerkin formulation using quadratic elements , 1992 .
[23] Simona Perotto,et al. Anisotropic Mesh Adaption with Application to CFD Problems , 2002 .
[24] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .
[25] Rainald Löhner,et al. A linelet preconditioner for incompressible flow solvers , 2003 .
[26] Franco Brezzi,et al. Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.) , 1993 .
[27] R. Codina,et al. A numerical model to track two‐fluid interfaces based on a stabilized finite element method and the level set technique , 2002 .
[28] Ramon Codina,et al. Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations , 2000, Numerische Mathematik.
[29] M. Fortin,et al. Iterative stabilization of the bilinear velocity-constant pressure element , 1990 .
[30] T. Hughes,et al. Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations , 1993 .
[31] Franco Brezzi,et al. $b=\int g$ , 1997 .
[32] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .
[33] R. Codina,et al. A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation , 1997 .