Semi‐parametric Regression under Model Uncertainty: Economic Applications[Link]

Abstract Economic theory does not always specify the functional relationship between dependent and explanatory variables, or even isolate a particular set of covariates. This means that model uncertainty is pervasive in empirical economics. In this paper, we indicate how Bayesian semi‐parametric regression methods in combination with stochastic search variable selection can be used to address two model uncertainties simultaneously: (i) the uncertainty with respect to the variables which should be included in the model and (ii) the uncertainty with respect to the functional form of their effects. The presented approach enables the simultaneous identification of robust linear and nonlinear effects. The additional insights gained are illustrated on applications in empirical economics, namely willingness to pay for housing, and cross‐country growth regression.

[1]  Paul Hofmarcher,et al.  Bivariate jointness measures in Bayesian Model Averaging: Solving the conundrum , 2018, Journal of Macroeconomics.

[2]  Christopher F. Parmeter,et al.  Growth Empirics Without Parameters , 2012 .

[3]  L. Fahrmeir,et al.  Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models , 2011, 1105.5250.

[4]  Gary Koop,et al.  Semiparametric Bayesian inference in smooth coefficient models , 2006 .

[5]  Qi Li,et al.  Nonparametric Econometrics: Theory and Practice , 2006 .

[6]  R. Kohn,et al.  Nonparametric regression using Bayesian variable selection , 1996 .

[7]  Martin Feldkircher,et al.  Bayesian model averaging employing fixed and flexible priors: The BMS package for R , 2015 .

[8]  Christian Henn,et al.  Trade Creation and Diversion Revisited: Accounting for Model Uncertainty and Natural Trading Partner Effects , 2008 .

[9]  X. Sala-i-Martin,et al.  Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (Bace) Approach , 2000 .

[10]  Ludwig Fahrmeir,et al.  Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection , 2010, Stat. Comput..

[11]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[12]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[13]  D. Rubinfeld,et al.  Hedonic housing prices and the demand for clean air , 1978 .

[14]  Christopher F. Parmeter,et al.  Comparison Of Model Averaging Techniques: Assessing Growth Determinants , 2012 .

[15]  Christopher F. Parmeter,et al.  Does Education Matter for Economic Growth? , 2014 .

[16]  F. Scheipl spikeSlabGAM: Bayesian Variable Selection, Model Choice and Regularization for Generalized Additive Mixed Models in R , 2011, 1105.5253.

[17]  J. Cuaresma How different is Africa? A comment on Masanjala and Papageorgiou , 2011 .

[18]  Jacob M. Montgomery,et al.  Bayesian Model Averaging: Theoretical Developments and Practical Applications , 2010, Political Analysis.

[19]  Christopher F. Parmeter,et al.  Applied Nonparametric Econometrics , 2015 .

[20]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[21]  Marek Jarocinski,et al.  Determinants of Economic Growth : Will Data Tell ? † , 2008 .

[22]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[23]  R. O’Hara,et al.  A review of Bayesian variable selection methods: what, how and which , 2009 .

[24]  James Mitchell,et al.  The Drivers of International Migration to the UK: A Panel�?Based Bayesian Model Averaging Approach , 2011 .

[25]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[26]  S. Wood Generalized Additive Models: An Introduction with R , 2006 .

[27]  N. Pillai,et al.  Dirichlet–Laplace Priors for Optimal Shrinkage , 2014, Journal of the American Statistical Association.

[28]  Jonathan R.W. Temple,et al.  Growth Econometrics for Agnostics and True Believers , 2015 .

[29]  Christopher F. Parmeter,et al.  Model Averaging Over Nonparametric Estimators , 2016 .

[30]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[31]  M. Steel,et al.  Model uncertainty in cross-country growth regressions , 2001 .

[32]  Kurt Hornik,et al.  Model uncertainty and aggregated default probabilities: new evidence from Austria , 2014 .

[33]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[34]  W. Brock,et al.  Growth empirics and reality , 2001 .

[35]  T. J. Mitchell,et al.  Bayesian Variable Selection in Linear Regression , 1988 .

[36]  G. Malsiner‐Walli,et al.  Comparing Spike and Slab Priors for Bayesian Variable Selection , 2016, 1812.07259.

[37]  M. Steel,et al.  Mixtures of G-Priors for Bayesian Model Averaging with Economic Application , 2011 .

[38]  Mingliang Li,et al.  Returns to Schooling and Bayesian Model Averaging: A Union of Two Literatures , 2004 .

[39]  Alan Y. Chiang,et al.  Generalized Additive Models: An Introduction With R , 2007, Technometrics.