Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results

Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes.

Fabrizio Ravegnani | Gerald Wetzel | Klaus Pfeilsticker | Valentin Mitev | Roderic L. Jones | Martin Riese | Franck Lefèvre | Stephan Borrmann | Ingo Wohltmann | Ralph Lehmann | Jörn Ungermann | Hermann Oelhaf | O. Suminska-Ebersoldt | Sabine Griessbach | Manfred Ern | Claudia Emde | C. Piesch | Lamont R. Poole | Reinhold Spang | Tobias Wegner | T. Gulde | Rigel Kivi | Vladimir Yushkov | F. Olschewski | Michelle L. Santee | Markus Rex | Imre M. Jánosi | Thomas Peter | Silvia Viciani | Francesco D'Amato | Francesco Cairo | A. Keil | A. Ebersoldt | Hans Schlager | Michael C. Pitts | M. Scheibe | Ralph Müller | Lars Hoffmann | Martin Ebert | Konrad Kandler | Christian Rolf | Nicole Spelten | Beiping Luo | Kaley A. Walker | Jessica R. Meyer | Fred Stroh | Thomas Röckmann | M. von Hobe | Cornelius Schiller | A. Dörnbrack | Frank G. Wienhold | Slimane Bekki | Sergey Khaykin | F. Pope | M. Pitts | M. Santee | K. Pfeilsticker | C. Emde | K. Walker | H. Oelhaf | W. Woiwode | V. Mitev | L. Poole | H. Schlager | I. Isaksen | S. Bekki | F. Lefévre | M. Ern | J. Ungermann | M. Riese | A. Roiger | T. Gulde | I. Jánosi | M. Marchand | B. Rognerud | B. Luo | C. Hoyle | T. Peter | F. Ravegnani | L. Hoffmann | D. Jackson | A. Dörnbrack | R. Kivi | S. Khaykin | R. Spang | S. Griessbach | J. Grooß | T. Röckmann | G. Wetzel | C. M. Volk | F. Stordal | S. Borrmann | M. Ebert | A. Keil | G. Günther | Y. Orsolini | F. Cairo | S. Ludmann | S. Viciani | C. Schiller | R. Müller | M. Hobe | R. Weigel | M. Rex | F. Olschewski | S. Weinbruch | M. Scheibe | N. Sitnikov | N. Spelten | S. Borrmann | P. Gathen | F. Wienhold | C. Rolf | C. Piesch | J. Laube | R. Lehmann | F. Khosrawi | J. Kuttippurath | V. Yushkov | G. Donfrancesco | W. Frey | A. Ebersoldt | T. Peter | Frode Stordal | Ivar S. A. Isaksen | O. A. Søvde | P. von der Gathen | I. Isaksen | Stephan Weinbruch | Christopher R. Hoyle | G. Di Donfrancesco | Jens-Uwe Grooß | I. Engel | W. Frey | Gebhard Günther | Sergej Molleker | K. Kandler | M. Siciliani de Cumis | T. Wegner | Marion Marchand | F. Khosrawi | Francis D. Pope | I. Wohltmann | F. Stroh | B. Rognerud | David Jackson | Wolfgang Woiwode | E. Hösen | Yvan Orsolini | S. Molleker | Ralf Weigel | Jayanarayanan Kuttippurath | Viktória Homonnai | J. C. Laube | B. Zobrist | O. Sumińska-Ebersoldt | Jessica Meyer | S. Genco | Christoph Kalicinsky | S. Ludmann | A. Roiger | N. Sitnikov | A. Ulanovski | M. vom Scheidt | I. A. K. Young | B. Zobrist | A. Ulanovski | E. Hösen | I. Engel | V. Homonnai | C. Kalicinsky | L. R. Poole | M. V. Scheidt | M. S. D. Cumis | F. D’Amato | M. Riese | C. Rolf | F. Wienhold | S. Bekki | Roderic L. Jones | Y. Orsolini | S. Genco | C. Volk | F. Cairo | C. R. Hoyle | M. Ebert | C. Emde | H. Schlager | L. Hoffmann | F. Lefèvre | J. Meyer | F. D. Pope | M. Ern | F. D’Amato | G. Günther | D. R. J. ckson | R. L. Jones | K. Kandler | R. Lehmann | B. Luo | R. Müller | K. Walker | T. Wegner | R. Weigel

[1]  M. Toohey,et al.  Validation of HNO3, C1ONO2, and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) , 2017 .

[2]  Martin Riese,et al.  Impact of uncertainties in atmospheric mixing on simulated UTLS composition and related radiative effects , 2012 .

[3]  W. V. Snyder,et al.  Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements , 2007 .

[4]  D. McKenna,et al.  A new Chemical Lagrangian Model of the Stratosphere (CLaMS) 1. Formulation of advection and mixing , 2002 .

[5]  M. Kulmala,et al.  Study of finely divided aqueous systems as an aid to understanding the surface chemistry of polar stratospheric clouds: Case of HCl/H2O and HNO3/HCl/H2O systems , 2003 .

[6]  K. Shibata,et al.  Future changes in the influence of the quasi‐biennial oscillation on the northern polar vortex simulated with an MRI chemistry climate model , 2012 .

[7]  J. Grooß,et al.  A re-evaluation of the ClO/Cl 2 O 2 equilibrium constant based on stratospheric in-situ observations , 2004 .

[8]  R. A. Cox,et al.  Temperature dependent structured absorption spectra of molecular chlorine. , 2011, Physical chemistry chemical physics : PCCP.

[9]  P. Braesicke,et al.  The World Avoided by the Montreal Protocol , 2008 .

[10]  T. Peter,et al.  Microphysics and heterogeneous chemistry of polar stratospheric clouds. , 1997, Annual review of physical chemistry.

[11]  Mark Z. Jacobson,et al.  A model for studying the composition and chemical effects of stratospheric aerosols , 1994 .

[12]  W. Woiwode Qualification of the airborne FTIR spectrometer MIPAS-STR and study on denitrification and chlorine deactivation in Arctic winter 2009/10 , 2013 .

[13]  P. Bernath,et al.  Uncertainties in modelling heterogeneous chemistry and Arctic ozone depletion in the winter 2009/2010 , 2012 .

[14]  R. Spang,et al.  Small-scale transport structures in the Arctic winter 2009/2010 , 2013 .

[15]  U. Bonafè,et al.  A Chemiluminescent Analyzer for Stratospheric Measurements of the Ozone Concentration (FOZAN) , 1999 .

[16]  T. Berntsen,et al.  Attribution of the Arctic ozone column deficit in March 2011 , 2012 .

[17]  D. Murphy,et al.  Mesoscale temperature fluctuations and polar stratospheric clouds , 1995 .

[18]  H. Vömel,et al.  Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations , 2007 .

[19]  R. Stolarski,et al.  Stratospheric Ozone Destruction by Man-Made Chlorofluoromethanes , 1974, Science.

[20]  D. Weisenstein,et al.  Sensitivity of ozone to bromine in the lower stratosphere , 2005 .

[21]  P. Crutzen,et al.  Activation of stratospheric chlorine by reactions in liquid sulphuric acid , 1994 .

[22]  C. Voigt,et al.  Extreme NAT supersaturations in mountain wave ice PSCs: A clue to NAT formation , 2003 .

[23]  R. Stolarski,et al.  Nimbus 7 satellite measurements of the springtime Antarctic ozone  decrease , 1986, Nature.

[24]  D. Fahey,et al.  An analysis of large HNO3‐containing particles sampled in the Arctic stratosphere during the winter of 1999/2000 , 2002 .

[25]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[26]  Lance E. Christensen,et al.  Edinburgh Research Explorer Validation of Aura Microwave Limb Sounder HCl measurements , 2022 .

[27]  H. Schlager,et al.  Quantifying transport into the Arctic lowermost stratosphere , 2009 .

[28]  Martyn P. Chipperfield,et al.  A study of stratospheric chlorine partitioning based on new satellite measurements and modeling , 2008 .

[29]  G. Toci,et al.  A cryogenically operated laser diode spectrometer for airborne measurement of stratospheric trace gases , 2008 .

[30]  M. Patrick McCormick,et al.  Polar stratospheric clouds and the Antarctic ozone hole , 1988 .

[31]  P. Crutzen,et al.  Size-dependent stratospheric droplet composition in Lee wave temperature fluctuations and their potential role in PSC freezing , 1995 .

[32]  Das Ozonloch und seine Ursachen , 2007 .

[33]  S. Tilmes,et al.  Severe ozone depletion in the cold Arctic winter 2004–05 , 2006 .

[34]  Marie-Alice Foujols,et al.  Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model , 2013, Climate Dynamics.

[35]  M. J. Molina,et al.  Production of Cl2O2 from the Self‐Reaction of the ClO Radical. , 1987 .

[36]  C. Brühl,et al.  Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends , 2010 .

[37]  Holger Vömel,et al.  Arctic stratospheric dehydration - Part 2: Microphysical modeling , 2013 .

[38]  R. Müller,et al.  Temperature thresholds for chlorine activation and ozone loss in the polar stratosphere , 2012 .

[39]  Rolf Müller,et al.  A new Chemical Lagrangian Model of the Stratosphere (CLaMS) 2. Formulation of chemistry scheme and initialization , 2002 .

[40]  M. Leutbecher,et al.  Mountain-wave-induced record low stratospheric temperatures above northern Scandinavia , 1999 .

[41]  M. Pitts,et al.  Denitrification and polar stratospheric cloud formation during the Arctic winter 2009/2010 , 2011 .

[42]  Peter H. Siegel,et al.  The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Martin Wirth,et al.  Aircraft lidar observations of an enhanced type Ia polar stratospheric clouds during APE‐POLECAT , 1999 .

[44]  Martyn P. Chipperfield,et al.  Arctic ozone loss and climate change , 2004 .

[45]  John Turner,et al.  Non‐annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent , 2009 .

[46]  T. Benter,et al.  The UV/Vis absorption spectrum of matrix-isolated dichlorine peroxide, ClOOCl. , 2009, Physical chemistry chemical physics : PCCP.

[47]  D. Fahey,et al.  A chemical definition of the boundary of the Antarctic ozone hole , 1989 .

[48]  P. Crutzen Ozone production rates in an oxygen‐hydrogen‐nitrogen oxide atmosphere , 1971 .

[49]  H. Nakamura,et al.  Geographical Dependence Observed in Blocking High Influence on the Stratospheric Variability through Enhancement and Suppression of Upward Planetary-Wave Propagation , 2011 .

[50]  G. Nikulin,et al.  A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010 , 2012 .

[51]  R. A. Cox,et al.  Stratospheric aerosol particles and solar-radiation management , 2012 .

[52]  R. Müller,et al.  Temperature thresholds for polar stratospheric ozone loss , 2010 .

[53]  S. Solomon,et al.  Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery? , 2011 .

[54]  S. Bony,et al.  The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection , 2006 .

[55]  N. Harris,et al.  A closer look at Arctic ozone loss and polar stratospheric clouds , 2010 .

[56]  D. Jackson,et al.  Estimation of Arctic ozone loss in winter 2004/05 based on assimilation of EOS MLS and SBUV/2 observations , 2008 .

[57]  M. Pitts,et al.  CALIPSO polar stratospheric cloud observations: second-generation detection algorithm and composition discrimination , 2009 .

[58]  E. Browell,et al.  Microphysical modeling of the 1999–2000 Arctic winter: 1. Polar stratospheric clouds, denitrification, and dehydration , 2002 .

[59]  Henk Eskes,et al.  Multi sensor reanalysis of total ozone , 2010 .

[60]  Adam A. Scaife,et al.  Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate , 2001, Nature.

[61]  W. Sturges,et al.  Fractional release factors of long-lived halogenated organic compounds in the tropical stratosphere , 2009 .

[62]  Manfred Birk,et al.  HCl and ClO in activated Arctic air; first retrieved vertical profiles from TELIS submillimetre limb spectra , 2012 .

[63]  Veronika Eyring,et al.  Attribution of observed changes in stratospheric ozone and temperature , 2010 .

[64]  S. Chubachi,et al.  total ozone variations at Syowa, Antactica , 1986 .

[65]  J. Farman,et al.  LARGE LOSSES OF TOTAL OZONE IN ANTARCTICA , 1985 .

[66]  D. Murtagh,et al.  An overview of the Odin atmospheric mission , 2002 .

[67]  R. Müller,et al.  Quantification of transport across the boundary of the lower stratospheric vortex during Arctic winter 2002/2003 , 2007 .

[68]  M. Molina,et al.  Heterogeneous interactions of nitryl hypochlorite and hydrogen chloride on nitric acid trihydrate at 202 K , 1992 .

[69]  M. Chipperfield,et al.  Long‐term observations of stratospheric bromine reveal slow down in growth , 2006 .

[70]  A. Jones The Antarctic ozone hole , 2008 .

[71]  H. Wernli,et al.  Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements , 2005 .

[72]  J. Bacmeister,et al.  Mesoscale temperature fluctuations induced by a spectrum of gravity waves: A comparison of parameterizations and their impact on stratospheric microphysics , 1999 .

[73]  M. Rex,et al.  The Lagrangian chemistry and transport model ATLAS: simulation and validation of stratospheric chemistry and ozone loss in the winter 1999/2000 , 2010 .

[74]  I. Isaksen,et al.  Estimation of Arctic O3 loss during winter 2006/2007 using data assimilation and comparison with a chemical transport model , 2011 .

[75]  R. Müller,et al.  Uncertainties in reactive uptake coefficients for solid stratospheric particles—2. Effect on ozone depletion , 1997 .

[76]  E. Atlas,et al.  Short-lived brominated hydrocarbons – observations in the source regions and the tropical tropopause layer , 2011 .

[77]  I. Jánosi,et al.  Long-range correlations of extrapolar total ozone are determined by the global atmospheric circulation , 2007 .

[78]  L. Polvani,et al.  Stratospheric Polar Vortices , 2013 .

[79]  D. R. Hanson,et al.  Reactive Uptake of ClONO2 onto Sulfuric Acid Due to Reaction with HCl and H2O , 1994 .

[80]  M. Rummukainen,et al.  Chemical Ozone Loss in the Arctic Winter 1994/95 as Determined by the Match Technique , 1999 .

[81]  F. Pope,et al.  The UV and visible spectra of chlorine peroxide: Constraining the atmospheric photolysis rate , 2014 .

[82]  Martin Wirth,et al.  Mesoscale forecasts of stratospheric mountain waves , 1998 .

[83]  B. Mayer Radiative transfer in the cloudy atmosphere , 2009 .

[84]  E. Wolff,et al.  Reactions on sulphuric acid aerosol and on polar stratospheric clouds in the Antarctic stratosphere , 1991 .

[85]  D. McKenna,et al.  Fast in situ stratospheric hygrometers: A new family of balloon‐borne and airborne Lyman α photofragment fluorescence hygrometers , 1999 .

[86]  C. Brühl,et al.  Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics , 2010 .

[87]  Simone Tilmes,et al.  The Sensitivity of Polar Ozone Depletion to Proposed Geoengineering Schemes , 2008, Science.

[88]  B. Gary Mesoscale temperature fluctuations in the stratosphere , 2006 .

[89]  Fabrizio Ravegnani,et al.  MIPAS-STR measurements in the Arctic UTLS in winter/spring 2010: instrument characterization, retrieval and validation , 2011 .

[90]  M. Molina,et al.  Stratospheric sink for chlorofluoromethanes: chlorine atomc-atalysed destruction of ozone , 1974, Nature.

[91]  W. V. Snyder,et al.  Validation of the Aura Microwave Limb Sounder ClO measurements , 2007 .

[92]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[93]  James G. Anderson,et al.  Airborne Arctic Stratospheric Expedition II: An overview , 1993 .

[94]  T. Peter,et al.  Uncertainties in reactive uptake coefficients for solid stratospheric particles‐1. Surface chemistry , 1997 .

[95]  S. Sander,et al.  Kinetics and Mechanism of the CIO + CIO Reaction: Pressure and Temperature Dependences of the Bimolecular and Termolecular Channels andThermal Decomposition of Chlorine Peroxide, CIOOCI , 1994 .

[96]  Donal P. Murtagh,et al.  Nitric acid in the stratosphere based on Odin observations from 2001 to 2009 – Part 1: A global climatology , 2009 .

[97]  S. Wofsy,et al.  Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine , 1986, Nature.

[98]  S. Solomon,et al.  Ozone destruction through heterogeneous chemistry following the eruption of El Chichón , 1989 .

[99]  D. R. Hanson,et al.  Reaction of ClONO2 with HCl on NAT, NAD, and frozen sulfuric acid and hydrolysis of N2O5 and ClONO2 on frozen sulfuric acid , 1993 .

[100]  T. Canty,et al.  Understanding the kinetics of the ClO dimer cycle , 2006 .

[101]  P. Crutzen,et al.  Arctic ozone loss due to denitrification , 1999, Science.

[102]  R. Turco,et al.  Polar stratospheric clouds and ozone depletion , 1991 .

[103]  Heikki Saari,et al.  The ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[104]  Michiel van Weele,et al.  An empirical model to predict the UV‐index based on solar zenith angles and total ozone , 2004 .

[105]  E. Browell,et al.  Observational evidence against mountain‐wave generation of ice nuclei as a prerequisite for the formation of three solid nitric acid polar stratospheric clouds observed in the Arctic in early December 1999 , 2004 .

[106]  M. Salby,et al.  Rebound of Antarctic ozone , 2011 .

[107]  Stanley C. Solomon,et al.  Stratospheric ozone depletion: A review of concepts and history , 1999 .

[108]  Ingo Wohltmann,et al.  Polar stratospheric chlorine kinetics from a self‐match flight during SOLVE‐II/EUPLEX , 2008 .

[109]  P. Crutzen Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma? , 2006 .

[110]  Mark R. Schoeberl,et al.  Unprecedented Arctic ozone loss in 2011 , 2011, Nature.

[111]  M. Kurylo,et al.  An overview of the SOLVE/THESEO 2000 campaign , 2002 .

[112]  E. Atlas,et al.  Age of stratospheric air unchanged within uncertainties over the past 30 years , 2009 .

[113]  P. Crutzen,et al.  The unsuitability of meteoritic and other nuclei for polar stratospheric cloud freezing , 1996 .

[114]  Stanley P. Sander,et al.  NASA Data Evaluation: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies , 2014 .

[115]  R. Turco,et al.  Condensation of HNO3 and HCl in the winter polar stratospheres , 1986 .

[116]  Holger Vömel,et al.  Particle backscatter and relative humidity measured across cirrus clouds and comparison with microphysical cirrus modelling , 2012 .

[117]  N. Sitnikov,et al.  The FOZAN-II Fast-Response Chemiluminescent Airborne Ozone Analyzer , 2001 .

[118]  C. Voigt,et al.  Nat-rock Formation by Mother Clouds Nat-rock Formation by Mother Clouds: a Microphysical Model Study Acpd Nat-rock Formation by Mother Clouds , 2001 .

[119]  T. Peter,et al.  Efficiency of immersion mode ice nucleation on surrogates of mineral dust , 2007 .

[120]  S. Solomon,et al.  Four decades of ozonesonde measurements over Antarctica , 2005 .

[121]  Franck Lefèvre,et al.  The 1997 Arctic Ozone depletion quantified from three‐dimensional model simulations , 1998 .

[122]  S. Kühl,et al.  Bond strength of chlorine peroxide. , 2005, The journal of physical chemistry. A.

[123]  W. Brune,et al.  Ozone destruction by chlorine radicals within the Antarctic vortex: The spatial and temporal evolution of ClO‐O3 anticorrelation based on in situ ER‐2 data , 1989 .

[124]  S. Solomon,et al.  Simulation of polar stratospheric clouds in the specified dynamics version of the whole atmosphere community climate model , 2013 .

[125]  Christos Zerefos,et al.  Arctic winter 2005: Implications for stratospheric ozone loss and climate change , 2006 .

[126]  C. Buontempo,et al.  Optical measurements of atmospheric particles from airborne platforms: in situ and remote sensing instruments for balloons and aircrafts , 2006 .

[127]  R. Salawitch,et al.  First measurements of ClOOCl in the stratosphere: The coupling of ClOOCl and ClO in the Arctic polar vortex , 2004 .

[128]  N. Harris,et al.  SCOUT-O3/ACTIVE High-altitude Aircraft Measurements around Deep Tropical Convection , 2008 .

[129]  Claudia Marcolli,et al.  Do atmospheric aerosols form glasses , 2008 .

[130]  W. Sturges,et al.  Long - term tropospheric trend of octafluorocyclobutane (c-C4F8 or PFC-318) , 2011 .

[131]  Henk Eskes,et al.  Retrieval and validation of ozone columns derived from measurements of SCIAMACHY on Envisat , 2005 .

[132]  M. Molina,et al.  Study of finely divided aqueous systems as an aid to understanding the formation mechanism of polar stratospheric clouds: Case of HNO3/H2O and H2SO4/H2O systems , 2003 .

[133]  P. Crutzen,et al.  On the potential importance of the gas phase reaction CH3O2 + ClO → ClOO + CH3O and the heterogeneous reaction HOCl + HCl → H2O + Cl2 in “ozone hole” chemistry , 1992 .

[134]  T. Canty,et al.  Understanding the kinetics of the ClO dimer cycle , 2006 .

[135]  C. Emde,et al.  ClOOCl photolysis at high solar zenith angles: analysis of the RECONCILE self-match flight , 2011 .

[136]  Rolf Müller,et al.  Mixing and ozone loss in the 1999–2000 Arctic vortex: Simulations with the three‐dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS) , 2004 .

[137]  L. Oman,et al.  Impacts of climate change on stratospheric ozone recovery , 2009 .

[138]  A. Tuck,et al.  The planning and execution of ER‐2 and DC‐8 aircraft flights over Antarctica, August and September 1987 , 1989 .

[139]  V. Mitev,et al.  Heterogeneous chlorine activation on stratospheric aerosols and clouds in the Arctic polar vortex , 2012 .

[140]  P. Kushner,et al.  Impact of the stratosphere on tropospheric climate change , 2008 .

[141]  T. Shepherd,et al.  Impact of climate change on stratospheric sudden warmings as simulated by the Canadian Middle Atmosphere Model. , 2009 .

[142]  V. Mitev,et al.  Evidence for ice particles in the tropical stratosphere from in-situ measurements , 2008 .

[143]  J. Rosen,et al.  Backscattersonde: a new instrument for atmospheric aerosol research. , 1991, Applied optics.

[144]  F. Lott,et al.  The coupled chemistry-climate model LMDz-REPROBUS: description and evaluation of a transient simulation of the period 1980–1999 , 2008 .

[145]  L. Froidevaux,et al.  Record-breaking ozone loss in the Arctic winter 2010/2011: comparison with 1996/1997 , 2012 .

[146]  M. Dameris,et al.  Impact of climate change on the stratospheric ozone layer , 2011 .

[147]  E. Underhill Nitric acid. , 2019, The Homoeopathic recorder.

[148]  W. J. Thompson,et al.  Aerosols at altitudes between 20 and 37 km , 1970 .

[149]  M. Geller,et al.  An Observational Study on the Latitudes Where Wave Forcing Drives Brewer–Dobson Upwelling , 2012 .

[150]  D. Fahey,et al.  UV absorption spectrum of the ClO dimer (Cl2O2) between 200 and 420 nm. , 2009, The journal of physical chemistry. A.

[151]  D. Hartmann,et al.  Does the Holton–Tan Mechanism Explain How the Quasi-Biennial Oscillation Modulates the Arctic Polar Vortex? , 2012 .

[152]  G. Schmidt,et al.  Simulation of recent northern winter climate trends by greenhouse-gas forcing , 1999, Nature.

[153]  R. P. Lowe,et al.  Atmospheric Chemistry Experiment (ACE): Mission overview. , 2005 .

[154]  D. S. Sayres,et al.  UV Dosage Levels in Summer: Increased Risk of Ozone Loss from Convectively Injected Water Vapor , 2012, Science.

[155]  T. Shepherd,et al.  Response of the Middle Atmosphere to CO2 Doubling: Results from the Canadian Middle Atmosphere Model , 2007 .

[156]  J. J. Lin,et al.  UV Absorption Cross Sections of ClOOCl Are Consistent with Ozone Degradation Models , 2009, Science.

[157]  Paul J. Crutzen,et al.  The lifetime of leewave‐induced ice particles in the Arctic stratosphere: I. Balloonborne observations , 1994 .

[158]  D. Fahey,et al.  Measurements of large stratospheric particles in the Arctic polar vortex , 2003 .

[159]  J. Pyle,et al.  An introduction to the SCOUT-AMMA stratospheric aircraft, balloons and sondes campaign in West Africa, August 2006: rationale and roadmap , 2010 .

[160]  P. Hamill,et al.  Arctic “ozone hole” in a cold volcanic stratosphere , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[161]  P. Crutzen Upper limits on atmospheric ozone reductions following increased application of fixed nitrogen to the soil , 1976 .

[162]  Richard P. Turco,et al.  The Airborne Arctic Stratospheric Expedition: Prologue , 1990 .

[163]  M. Pitts,et al.  NAT nucleation and denitrification in the Arctic stratosphere , 2013 .

[164]  B. Ayarzagüena,et al.  Tropospheric forcing of the stratosphere: A comparative study of the two different major stratospheric warmings in 2009 and 2010 , 2011 .

[165]  Bernhard Mayer,et al.  Atmospheric Chemistry and Physics Technical Note: the Libradtran Software Package for Radiative Transfer Calculations – Description and Examples of Use , 2022 .

[166]  Brian J. Drouin,et al.  Validation of the Aura Microwave Limb Sounder HNOmeasurements , 2007 .

[167]  B. Mayer,et al.  ALIS: An efficient method to compute high spectral resolution polarized solar radiances using the Monte Carlo approach , 2011, 1901.01842.

[168]  D. Weisenstein,et al.  Toward a better quantitative understanding of polar stratospheric ozone loss , 2005 .

[169]  K. Kelly,et al.  Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation , 1992 .

[170]  Gerald Wetzel,et al.  Diurnal variations of reactive chlorine and nitrogen oxides observed by MIPAS-B inside the January 2010 Arctic vortex , 2012 .

[171]  P. Crutzen,et al.  Do stratospheric aerosol droplets freeze above the ice frost point , 1995 .

[172]  J. Farman,et al.  Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction , 1985, Nature.

[173]  M. Chipperfield,et al.  Atmospheric test of the J(BrONO 2 )/ k BrO+NO 2 ratio: implications for total stratospheric Br y and bromine-mediated ozone loss , 2012 .

[174]  Lamont R. Poole,et al.  Heterogeneous formation of polar stratospheric clouds - Part 1: Nucleation of nitric acid trihydrate (NAT) , 2013 .

[175]  P. Bernath,et al.  Comparisons between ACE‐FTS and ground‐based measurements of stratospheric HCl and ClONO2 loadings at northern latitudes , 2005 .

[176]  M. Santee,et al.  Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics , 2008 .

[177]  S. Wofsy,et al.  Denitrification in the Antarctic stratosphere , 1989, Nature.

[178]  M. Pitts,et al.  Arctic stratospheric dehydration – Part 1: Unprecedented observation of vertical redistribution of water , 2013 .

[179]  C. Voigt,et al.  Experimental characterization of the COndensation PArticle counting System for high altitude aircraft-borne application , 2008 .

[180]  M. McIntyre On the Antarctic ozone hole , 1989 .

[181]  Marc Rautenhaus,et al.  Geoscientific Model Development A web service based tool to plan atmospheric research flights , 2012 .

[182]  M. Ern,et al.  CRISTA-NF measurements of water vapor during the SCOUT-O3 Tropical Aircraft Campaign , 2009 .

[183]  P. Mote,et al.  Tropical tropopause layer , 2009 .

[184]  L. Polvani,et al.  Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere , 2011 .

[185]  M. Wirth,et al.  Increased stratospheric ozone depletion due to mountain-induced atmospheric waves , 1998, Nature.

[186]  T. L. Thompson,et al.  The Detection of Large HNO3-Containing Particles in the Winter Arctic Stratosphere , 2001, Science.

[187]  W. Sturges,et al.  Accelerating growth of HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane) in the atmosphere , 2010 .

[188]  H. Gernandt The vertical ozone distribution above the GDR-research base, Antarctica in 1985 , 1987 .

[189]  S. Solomon,et al.  On the depletion of Antarctic ozone , 1986, Nature.

[190]  D. Worsnop,et al.  Kinetic model for reaction of ClONO2 with H2O and HCl and HOCl with HCl in sulfuric acid solutions , 2001 .

[191]  Vladimir Yushkov,et al.  Optical balloon hygrometer for upper-troposphere and stratosphere water vapor measurements , 1998, Asia-Pacific Environmental Remote Sensing.

[192]  Roland Neuber,et al.  Nonequilibrium coexistence of solid and liquid particles in Arctic stratospheric clouds , 2001 .

[193]  G. Mann,et al.  The wintertime two-day wave in the polar stratosphere , mesosphere and lower thermosphere , 2008 .

[194]  Retrievals of chlorine chemistry kinetic parameters from Antarctic ClO microwave radiometer measurements , 2010 .

[195]  H. Treut,et al.  Sulfate Aerosol Indirect Effect and CO2 Greenhouse Forcing: EquilibriumResponse of the LMD GCM and Associated Cloud Feedbacks , 1998 .

[196]  F. Goutail,et al.  Antarctic ozone loss in 1979–2010: first sign of ozone recovery , 2013 .

[197]  L. Oman,et al.  What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated , 2008 .

[198]  C. Westbrook (www.interscience.wiley.com) DOI: 10.1002/qj.000 The fall speeds of sub-100µm ice crystals , 2022 .

[199]  R. Bojkov,et al.  Observed and modelled record ozone decline over the Arctic during winter/spring 2011 , 2011 .

[200]  M. Pitts,et al.  The 2009–2010 Arctic stratospheric winter – general evolution, mountain waves and predictability of an operational weather forecast model , 2011 .

[201]  Santee,et al.  Quantifying denitrification and its effect on ozone recovery , 2000, Science.

[202]  F. Goutail,et al.  Antarctic ozone loss in 1989–2010: evidence for ozone recovery? , 2012 .

[203]  W. Feng,et al.  The potential impact of ClO x radical complexes on polar stratospheric ozone loss processes , 2005 .

[204]  A. MacKenzie,et al.  The M-55 Geophysica as a Platform for the Airborne Polar Experiment , 1999 .

[205]  W. Sturges,et al.  Distributions, long term trends and emissions of four perfluorocarbons in remote parts of the atmosphere and firn air , 2012 .

[206]  R. Stolarski,et al.  Stratospheric ozone in the post-CFC era , 2008 .

[207]  David R. Jackson,et al.  Assimilation of EOS MLS ozone observations in the Met Office data‐assimilation system , 2007 .

[208]  Lamont R. Poole,et al.  Heterogeneous formation of polar stratospheric clouds – Part 2: Nucleation of ice on synoptic scales , 2013 .

[209]  H. Schlager,et al.  Nitric Acid Trihydrate (NAT) formation at low NAT supersaturation in Polar Stratospheric Clouds (PSCs) , 2005 .

[210]  P. Newman,et al.  The Arctic vortex in March 2011: a dynamical perspective , 2011 .

[211]  G. Brasseur Creating Knowledge from the Confrontation of Observations and Models: The Case of Stratospheric Ozone , 2008 .

[212]  F. Lefévre,et al.  Comparative Spectral Analysis and Correlation Properties of Observed and Simulated Total Column Ozone Records , 2013 .

[213]  Michael J. Prather,et al.  Antarctic ozone: Meteoric control of HNO3 , 1988 .

[214]  C. D. Homan,et al.  Tracer measurements in the tropical tropopause layer during the AMMA/SCOUT-O3 aircraft campaign , 2009 .

[215]  H. Johnston Reduction of Stratospheric Ozone by Nitrogen Oxide Catalysts from Supersonic Transport Exhaust , 1971, Science.

[216]  J. Holton,et al.  The Influence of the Equatorial Quasi-Biennial Oscillation on the Global Circulation at 50 mb , 1980 .

[217]  F. Goutail,et al.  Why unprecedented ozone loss in the Arctic in 2011? Is it related to climate change? , 2013 .

[218]  D. R. Hanson,et al.  Heterogeneous reactions in sulfuric acid aerosols: A framework for model calculations , 1994 .

[219]  P. Preusse,et al.  CRISTA-NF measurements during the AMMA-SCOUT-O3 aircraft campaign , 2010 .

[220]  Fabrizio Ravegnani,et al.  CRISTA-NF measurements with unprecedented vertical resolution during the RECONCILE aircraft campaign , 2011 .

[221]  R. Müller A brief history of stratospheric ozone research , 2009 .

[222]  A. Keil,et al.  Observation-based assessment of stratospheric fractional release, lifetimes, and ozone depletion potentials of ten important source gases , 2012 .

[223]  R. Bradley Pierce,et al.  A climatology of stratospheric polar vortices and anticyclones , 2002 .

[224]  P. Crutzen Estimates of possible future ozone reductions from continued use of fluoro‐chloro‐methanes (CF2Cl2, CFCl3) , 1974 .

[225]  F. Lefévre,et al.  The simulation of the Antarctic ozone hole by chemistry-climate models , 2009 .

[226]  Q. Schiermeier Chemists poke holes in ozone theory , 2007, Nature.

[227]  R. Müller,et al.  Interactive comment on "Temperature thresholds for polar stratospheric ozone loss" by K. Drdla , 2011 .

[228]  S. Dhomse,et al.  Decline and recovery of total column ozone using a multimodel time series analysis , 2010 .

[229]  J. Langen,et al.  MARSCHALS: airborne simulator of a future space instrument to observe millimeter-wave limb emission from the upper troposphere and lower stratosphere , 2006, SPIE Remote Sensing.

[230]  G. Nikulin,et al.  Variability of the Northern Hemisphere polar stratospheric cloud potential: the role of North Pacific disturbances , 2009 .

[231]  A. Mangold,et al.  The FLASH instrument for water vapor measurements on board the high-altitude airplane , 2007 .

[232]  Revisiting Ozone Depletion , 2007 .

[233]  H. Schlager,et al.  Simulation of denitrification and ozone loss for the Arctic winter 2002/2003 , 2004 .

[234]  T. Röckmann,et al.  Probing stratospheric transport and chemistry with new balloon and aircraft observations of the meridional and vertical N 2 O isotope distribution , 2006 .

[235]  Veronika Eyring,et al.  Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models , 2010 .

[236]  Bernhard Mayer,et al.  Solar radiation during a total eclipse: A challenge for radiative transfer , 2007 .

[237]  H. Jonsson,et al.  The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations , 2001 .

[238]  M. Rex,et al.  The Lagrangian chemistry and transport model ATLAS: validation of advective transport and mixing , 2009 .

[239]  Larry W. Thomason,et al.  The 2009–2010 Arctic polar stratospheric cloud season: a CALIPSO perspective , 2010 .

[240]  Photodissociation cross sections of ClOOCl at 248.4 and 266 nm. , 2009, The Journal of chemical physics.

[241]  P. Newman,et al.  An objective determination of the polar vortex using Ertel's potential vorticity , 1996 .

[242]  G. Brasseur,et al.  Chemistry of the 1991–1992 stratospheric winter: Three‐dimensional model simulations , 1994 .

[243]  F. Hourdin,et al.  Dynamical amplification of the stratospheric solar response simulated with the Chemistry-Climate Model LMDz-Reprobus , 2012 .