Pattern formation mechanisms in reaction-diffusion systems.

In systems undergoing chemical reaction and diffusion, a remarkable variety of spatially structured patterns, stationary or moving, local or global, can arise, many of them reminiscent of forms and phenomena seen in living systems. Chemical systems offer the advantage that one can often control the parameters that determine the patterns formed and can thereby probe fundamental issues about pattern formation, with possible insights into biologically relevant phenomena. We present experimental examples and discuss several mechanisms by which such spatiotemporal structure may arise, classifying the mechanisms according to the type of instability that results in pattern formation. In some systems, the pattern that emerges depends not only on the chemical and physical parameters but also on the initial state of the system. Interactions between instabilities can result in particularly complex patterns.

[1]  Vladimir G Cherdantsev,et al.  The dynamic geometry of mass cell movements in animal morphogenesis. , 2006, The International journal of developmental biology.

[2]  I. Epstein,et al.  A new iodate oscillator: the Landolt reaction with ferrocyanide in a CSTR , 1986 .

[3]  Mathias Bode,et al.  Interacting Pulses in Three-Component Reaction-Diffusion Systems on Two-Dimensional Domains , 1997 .

[4]  Kosek,et al.  Collision-stable waves in excitable reaction-diffusion systems. , 1995, Physical review letters.

[5]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[6]  Francesc Sagués,et al.  Nonlinear chemical dynamics , 2003 .

[7]  A. Hodgkin,et al.  Propagation of electrical signals along giant nerve fibres , 1952, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[8]  A. Zhabotinsky,et al.  Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System , 1970, Nature.

[9]  Irving R Epstein,et al.  Cross-diffusion and pattern formation in reaction-diffusion systems. , 2009, Physical chemistry chemical physics : PCCP.

[10]  Dulos,et al.  Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. , 1990, Physical review letters.

[11]  I. Epstein,et al.  Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol OT microemulsion. , 2001, Physical review letters.

[12]  I. Epstein,et al.  Modeling of Turing Structures in the Chlorite—Iodide—Malonic Acid—Starch Reaction System , 1991, Science.

[13]  James D. Murray,et al.  Spatial models and biomedical applications , 2003 .

[14]  H. Meinhardt From observations to paradigms; the importance of theories and models. An interview with Hans Meinhardt by Richard Gordon and Lev Beloussov. , 2006, The International journal of developmental biology.

[15]  A. Winfree Spiral Waves of Chemical Activity , 1972, Science.

[16]  H. Swinney,et al.  Experimental observation of self-replicating spots in a reaction–diffusion system , 1994, Nature.

[17]  R. Fields Signaling from Neural Impulses to Genes , 1996, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[18]  Irving R Epstein,et al.  Dash waves in a reaction-diffusion system. , 2003, Physical review letters.

[19]  P. Raymond,et al.  A moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina. , 2004, The International journal of developmental biology.

[20]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[21]  Vladimir K. Vanag,et al.  Inwardly Rotating Spiral Waves in a Reaction-Diffusion System , 2001, Science.

[22]  Milos Dolnik,et al.  Spatial resonances and superposition patterns in a reaction-diffusion model with interacting Turing modes. , 2002, Physical review letters.

[23]  Q Ouyang,et al.  Pattern Formation by Interacting Chemical Fronts , 1993, Science.

[24]  Irving R. Epstein,et al.  Systematic design of chemical oscillators. Part 8. Batch oscillations and spatial wave patterns in chlorite oscillating systems , 1982 .

[25]  Shigeru Kondo The reaction‐diffusion system: a mechanism for autonomous pattern formation in the animal skin , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[26]  P. Maini,et al.  Two-stage Turing model for generating pigment patterns on the leopard and the jaguar. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  R. Gordon,et al.  From observations to paradigms; the importance of theories and models. An interview with Hans Meinhardt , 2006 .

[28]  E. Bonabeau,et al.  Spatial patterns in ant colonies , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Stéphane Métens,et al.  Formation of rhombic and superlattice patterns in bistable systems , 2001 .

[30]  Nihon Hassei Seibutsu Gakkai,et al.  Genes to cells , 1996 .

[31]  Irving R Epstein,et al.  Localized patterns in reaction-diffusion systems. , 2007, Chaos.

[32]  Hans Meinhardt,et al.  Out-of-phase oscillations and traveling waves with unusual properties: the use of three-component systems in biology , 2004 .

[33]  J. Timmer,et al.  Supporting Online Material Material and Methods , 2022 .

[34]  N. Maizels,et al.  Just so stories Hardback $39.95; paperback $22.95 W.F. Loomis Four Billion Years: An Essay on the , 1988, Cell.

[35]  V. Vanag Waves and patterns in reaction-diffusion systems. Belousov-Zhabotinsky reaction in water-in-oil microemulsions , 2004 .

[36]  Vladimir K. Vanag,et al.  Segmented spiral waves in a reaction-diffusion system , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Irving R Epstein,et al.  Packet waves in a reaction-diffusion system. , 2002, Physical review letters.

[38]  Wavelength halving in a transition between standing waves and traveling waves. , 2005, Physical review letters.

[39]  H. Petty,et al.  Dissipative metabolic patterns respond during neutrophil transmembrane signaling. , 2010, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Milos Dolnik,et al.  Turing patterns beyond hexagons and stripes. , 2006, Chaos.

[41]  G. Forgacs,et al.  Before programs: the physical origination of multicellular forms. , 2006, The International journal of developmental biology.

[42]  P. Camacho,et al.  Ca2+ wave dispersion and spiral wave entrainment in Xenopus laevis oocytes overexpressing Ca2+ ATPases. , 1998, Biophysical Chemistry.

[43]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[44]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[45]  Irving R Epstein,et al.  Oscillatory Turing patterns in reaction-diffusion systems with two coupled layers. , 2003, Physical review letters.

[46]  R. Douglas Fields,et al.  Action Potential-Dependent Regulation of Gene Expression: Temporal Specificity in Ca2+, cAMP-Responsive Element Binding Proteins, and Mitogen-Activated Protein Kinase Signaling , 1997, The Journal of Neuroscience.

[47]  Wei-Min Shen,et al.  Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models. , 2004, The International journal of developmental biology.

[48]  Francesc Sagués,et al.  Experimental evidence of localized oscillations in the photosensitive chlorine dioxide-iodine-malonic acid reaction. , 2006, Physical review letters.

[49]  Irving R Epstein,et al.  A reaction-diffusion memory device. , 2006, Angewandte Chemie.

[50]  A. Charles,et al.  Spiral intercellular calcium waves in hippocampal slice cultures. , 1998, Journal of neurophysiology.

[51]  I. Epstein,et al.  "Black spots" in a surfactant-rich Belousov-Zhabotinsky reaction dispersed in a water-in-oil microemulsion system. , 2005, The Journal of chemical physics.

[52]  Irving R. Epstein,et al.  Systematic design of chemical oscillators. Part 65. Batch oscillation in the reaction of chlorine dioxide with iodine and malonic acid , 1990 .

[53]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[54]  H. Petty,et al.  Apparent role of traveling metabolic waves in oxidant release by living neutrophils , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Irving R Epstein,et al.  Jumping solitary waves in an autonomous reaction-diffusion system with subcritical wave instability. , 2006, Physical chemistry chemical physics : PCCP.

[56]  S. Kondo,et al.  A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus , 1995, Nature.

[57]  M. Sekiguchi Genes to cells: edited by Jun-ichi Tomizawa, Blackwell Science Ltd. Institutional: £218.00 (Europe), £242.00 (Rest of World), US$382.00 (USA and Canada). Individual: £65.00 (Europe), £72.00 (Rest of World), US$114.00 (USA and Canada) ISSN 1356 9597 , 1997 .

[58]  L. Kuhnert,et al.  Analysis of the modified complete Oregonator accounting for oxygen sensitivity and photosensitivity of Belousov-Zhabotinskii systems , 1990 .

[59]  R. J. Field,et al.  Oscillations and Traveling Waves in Chemical Systems , 1985 .

[60]  Irving R Epstein,et al.  Discontinuously propagating waves in the bathoferroin-catalyzed Belousov-Zhabotinsky reaction incorporated into a microemulsion. , 2008, The Journal of chemical physics.

[61]  Andreas W. Liehr,et al.  Interaction of dissipative solitons: particle-like behaviour of localized structures in a three-component reaction-diffusion system , 2002 .