Fourier Analysis of Genetic Algorithms

We propose a general framework for Fourier analysis in the field of genetic algorithms. We introduce special functions, analogous to sine and cosine for real numbers, that have nice properties with respect to genetic operations such as mutation and crossover. The special functions we introduce are generalizations of bit products and Walsh products. As applications, we trace (both analytically and numerically) the behavior of genetic algorithms, and obtain results on the fitness of schemata.

[1]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[2]  Siddhartha Bhattacharyya,et al.  General Cardinality Genetic Algorithms , 1997, Evolutionary Computation.

[3]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[4]  Gunar E. Liepins,et al.  Punctuated Equilibria in Genetic Search , 1991, Complex Syst..

[5]  Francesco Palmieri,et al.  Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space. Part I: Basic properties of selection and mutation , 1994, IEEE Trans. Neural Networks.

[6]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[7]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part II, Deception and Its Analysis , 1989, Complex Syst..

[8]  Saburo Okada,et al.  Schema spectral analysis , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[9]  Albert Donally Bethke,et al.  Genetic Algorithms as Function Optimizers , 1980 .

[10]  Joost N. Kok,et al.  Tracing the Behavior of Genetic Algorithms Using Expected Values of Bit and Walsh Products , 1995, ICGA.

[11]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part I, A Gentle Introduction , 1989, Complex Syst..

[12]  A. E. Eiben,et al.  Global Convergence of Genetic Algorithms: A Markov Chain Analysis , 1990, PPSN.

[13]  Michael D. Vose,et al.  Modeling Simple Genetic Algorithms , 1992, FOGA.

[14]  Alden H. Wright,et al.  Simple Genetic Algorithms with Linear Fitness , 1994, Evolutionary Computation.

[15]  David E. Goldberg,et al.  The Nonuniform Walsh-Schema Transform , 1990, FOGA.

[16]  Lalit M. Patnaik,et al.  Binomially Distributed Populations for Modelling GAs , 1993, ICGA.

[17]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[18]  Gunar E. Liepins,et al.  Polynomials, Basis Sets, and Deceptiveness in Genetic Algorithms , 1991, Complex Syst..

[19]  L. Darrell Whitley,et al.  An Executable Model of a Simple Genetic Algorithm , 1992, FOGA.

[20]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[21]  Bruce W. Char,et al.  First Leaves: A Tutorial Introduction to Maple V , 1992 .

[22]  L. Altenberg The evolution of evolvability in genetic programming , 1994 .

[23]  Avi Wigderson,et al.  An Analysis of a Simple Genetic Algorithm , 1991, ICGA.

[24]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .