Generalized Chung-Feller Theorems for Lattice Paths

Generalized Chung-Feller Theorems for Lattice Paths A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University, Waltham, Massachusetts by Aminul Huq In this thesis we develop generalized versions of the Chung-Feller theorem for lattice paths constrained in the half plane. The beautiful cycle method which was developed by Devoretzky and Motzkin as a means to prove the ballot problem is modified and applied to generalize the classical Chung-Feller theorem. We use Lagrange inversion to derive the generalized formulas. For the generating function proof we study various ways of decomposing lattice paths. We also show some results related to equidistribution properties in terms of Narayana and Catalan generating functions. We then develop generalized Chung-Feller theorems for Motzkin and Schröder paths. Finally we study generalized paths and the analogue of the Chung-Feller theorem for them.

[1]  Dominique Foata,et al.  On the Principle of Equivalence of Sparre Andersen. , 1971 .

[2]  Percy Alexander MacMahon,et al.  Memoir on the theory of the partitions of numbers , 1912 .

[3]  Emeric Deutsch Dyck path enumeration , 1999, Discret. Math..

[4]  Walter Moreira,et al.  Combinatorics of the Free Baxter Algebra , 2006, Electron. J. Comb..

[5]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[6]  Nachum Dershowitz,et al.  The Cycle Lemma and Some Applications , 1990, Eur. J. Comb..

[7]  Germain Kreweras Joint distributions of three descriptive parameters of bridges , 1986 .

[8]  T. Motzkin,et al.  A problem of arrangements , 1947 .

[9]  Emeric Deutsch A bijective proof of the equation linking the Schro"der numbers, large and small , 2001, Discret. Math..

[10]  K. Chung,et al.  On fluctuations in coin tossing. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[11]  P. A. MacMahon III. Memoir on the theory of the partitions of numbers. Part I , 1896, Proceedings of the Royal Society of London.

[12]  Yeong-Nan Yeh,et al.  Refined Chung-Feller theorems for lattice paths , 2005, J. Comb. Theory, Ser. A.

[13]  Robert A. Sulanke,et al.  Generalizing Narayana and Schröder Numbers to Higher Dimensions , 2004, Electron. J. Comb..

[14]  G. N. Raney Functional composition patterns and power series reversion , 1960 .

[15]  P. A. MacMahon Memoir on the theory of the partitions of numbers. Part II , 1899, Proceedings of the Royal Society of London.

[16]  Robert A. Sulanke,et al.  Counting Lattice Paths by Narayana Polynomials , 2000, Electron. J. Comb..

[17]  P. Hilton,et al.  Catalan Numbers, Their Generalization, and Their Uses , 1991 .

[18]  Robert A. Sulanke,et al.  Bijections for the Schröder Numbers , 2000 .

[19]  Ira M. Gessel,et al.  A combinatorial proof of the multivariable lagrange inversion formula , 1987, J. Comb. Theory, Ser. A.

[20]  Wen-Jin Woan Uniform Partitions of Lattice Paths and Chung-Feller Generalizations , 2001, Am. Math. Mon..

[21]  Yeong-Nan Yeh,et al.  Taylor expansions for Catalan and Motzkin numbers , 2002, Adv. Appl. Math..

[22]  S. G. Mohanty,et al.  Lattice Path Counting and Applications. , 1980 .

[23]  Brian Hopkins,et al.  Tableau cycling and Catalan numbers. , 2007 .

[24]  Josef Rukavicka On Generalized Dyck Paths , 2011, Electron. J. Comb..

[25]  David Callan,et al.  Pair Them Up! A Visual Approach to the Chung-Feller Theorem , 1995 .

[26]  Cori Robert Combinatorics on words: Words and Trees , 1997 .

[27]  Robert A. Sulanke,et al.  The Narayana distribution , 2002 .

[28]  Emeric Deutsch,et al.  A bijection between ordered trees and 2-Motzkin paths and its many consequences , 2002, Discret. Math..

[30]  T. V. Narayana Cyclic permutation of lattice paths and the Chung-Feller theorem , 1967 .

[31]  Jean-Christophe Aval,et al.  Multivariate Fuss-Catalan numbers , 2007, Discret. Math..

[32]  Young-Ming Chen The Chung-Feller theorem revisited , 2008, Discret. Math..

[33]  Ira M. Gessel,et al.  A noncommutative generalization and $q$-analog of the Lagrange inversion formula , 1980 .

[34]  C. O'mahony,et al.  Why Is It? , 1880, The Dental Register.

[35]  Douglas B. West,et al.  The bricklayer problem and the Strong Cycle Lemma , 1998 .