Boundary control of a flexible marine installation system

In this paper, boundary control for a flexible marine installation system is developed to position the subsea payload to the desired set-point and suppress the cable's vibration. With the proposed boundary control, uniform boundedness under ocean disturbance can be ensured. The steady state error between the boundary payload and the desired position is proven to converge to a small neighborhood of zero by appropriately choosing design parameters. Simulations are provided to illustrate the applicability and effectiveness of the proposed control.

[1]  Jun-feng Li,et al.  Stabilization analysis of a generalized nonlinear axially moving string by boundary velocity feedback , 2008, Autom..

[2]  J. W. Humberston Classical mechanics , 1980, Nature.

[3]  Fumitoshi Matsuno,et al.  Robust boundary control of an axially moving string by using a PR transfer function , 2005, IEEE Transactions on Automatic Control.

[4]  Shuzhi Sam Ge,et al.  Model-free regulation of multi-link smart materials robots , 2001 .

[5]  Christopher D. Rahn,et al.  Mechatronic control of distributed noise and vibration , 2001 .

[6]  R. Blevins,et al.  Flow-Induced Vibration , 1977 .

[7]  Shuzhi Sam Ge,et al.  Boundary control of a flexible marine riser with vessel dynamics , 2010, Proceedings of the 2010 American Control Conference.

[8]  K. Hong,et al.  Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control , 2010 .

[9]  Frank L. Lewis,et al.  Flexible-link robot arm control by a feedback linearization/singular perturbation approach , 1994, J. Field Robotics.

[10]  Shuzhi Sam Ge,et al.  Adaptive robust controller design for multi-link flexible robots , 2001 .

[11]  K. Hong,et al.  Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension , 2004 .

[12]  Darren M. Dawson,et al.  Lyapunov-Based Control of Mechanical Systems , 2000 .

[13]  Shuzhi Sam Ge,et al.  Dynamic Load Positioning for Subsea Installation via Adaptive Neural Control , 2010, IEEE Journal of Oceanic Engineering.

[14]  P. Christofides,et al.  Wave suppression by nonlinear finite-dimensional control , 2000 .

[15]  M. Balas,et al.  Feedback control of flexible systems , 1978 .

[16]  Shuzhi Sam Ge,et al.  Active control of flexible marine risers , 2009 .

[17]  Miroslav Krstic,et al.  Backstepping boundary control for first order hyperbolic PDEs and application to systems with actuator and sensor delays , 2007, 2007 46th IEEE Conference on Decision and Control.

[18]  S. M. Shahruz,et al.  BOUNDARY CONTROL OF A NON-LINEAR STRING , 1996 .

[19]  M. Köhler,et al.  Pointwise maximum principle for convex optimal control problems with mixed control-phase variable inequality constraints , 1980 .

[20]  Shuzhi Sam Ge,et al.  Energy-based robust controller design for multi-link flexible robots , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[21]  Miroslav Krstic,et al.  Arbitrary Decay Rate for Euler-Bernoulli Beam by Backstepping Boundary Feedback , 2009, IEEE Transactions on Automatic Control.

[22]  Darren M. Dawson,et al.  Asymptotically Stabilizing Angle Feedback for a Flexible Cable Gantry Crane , 1999 .

[23]  Shuzhi Sam Ge,et al.  Boundary Control of a Coupled Nonlinear Flexible Marine Riser , 2010, IEEE Transactions on Control Systems Technology.

[24]  Shuzhi Sam Ge,et al.  Control of Coupled Vessel, Crane, Cable, and Payload Dynamics for Subsea Installation Operations , 2011, IEEE Transactions on Control Systems Technology.

[25]  Miroslav Krstic,et al.  Adaptive control of PDES , 2007 .

[26]  Miroslav Krstic,et al.  Control of a Tip-Force Destabilized Shear Beam by Observer-Based Boundary Feedback , 2008, SIAM J. Control. Optim..

[27]  M. Krstić Boundary Control of PDEs: A Course on Backstepping Designs , 2008 .

[28]  P. Christofides,et al.  Global stabilization of the Kuramoto–Sivashinsky equation via distributed output feedback control , 2000 .

[29]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[30]  Shuzhi Sam Ge,et al.  Improving regulation of a single-link flexible manipulator with strain feedback , 1998, IEEE Trans. Robotics Autom..

[31]  M. Balas Active control of flexible systems , 1978 .

[32]  Keum Shik Hong,et al.  Application of averaging method for integro-differential equations to model reference adaptive control of parabolic systems , 1994, Autom..

[33]  Fumitoshi Matsuno,et al.  Energy-based control of axially translating beams: varying tension, varying speed, and disturbance adaptation , 2005, IEEE Transactions on Control Systems Technology.

[34]  G. Zhu,et al.  Asymptotically Stable End-Point Regulation of a Flexible SCARA/Cartesian Robot , 1998 .

[35]  Shuzhi Sam Ge,et al.  A Quasi-Tracking Approach for Finite-Time Control of a Mass-Beam System , 1998, Autom..

[36]  Odd M. Faltinsen,et al.  Sea loads on ships and offshore structures , 1990 .

[37]  L. Meirovitch,et al.  On the problem of observation spillover in self-adjoint distributed-parameter systems , 1983 .

[38]  Fumitoshi Matsuno,et al.  Modeling and feedback control of a flexible arm , 1985, J. Field Robotics.

[39]  Zhihua Qu,et al.  Robust and adaptive boundary control of a stretched string on a moving transporter , 2001, IEEE Trans. Autom. Control..

[40]  Shuzhi Sam Ge,et al.  Variable structure control of a distributed‐parameter flexible beam , 2001 .

[41]  Rong-Fong Fung,et al.  Boundary Control of an Axially Moving String Via Lyapunov Method , 1999 .