Quantifying the modern recharge of the “fossil” Sahara aquifers

[1] The North-Western Sahara Aquifer System (NWSAS), one of the world's largest groundwater systems, shows an overall piezometric decline associated with increasing withdrawals. Estimating the recharge rate in such a semiarid system is challenging but crucial for sustainable water development. In this paper, the recharge of the NWSAS is estimated using a regional water budget based on GRACE terrestrial water storage monthly records, soil moisture from the GLDAS (a land data system that assimilates hydrological information), and groundwater pumping rates. A cumulated natural recharge rate of 1.40 ± 0.90 km3 yr−1is estimated for the two main aquifers. Our results suggest a renewal rate of about 40% which partly contradicts the premise that recharge in this area should be very low or even null. Aquifer depletion inferred from our analysis is consistent with observed piezometric head decline in the two main aquifers in the region. Annual recharge variations were also estimated and vary between 0 and 4.40 km3 yr−1for the period 2003–2010. These values correspond to a recharge between 0 and 6.75 mm yr−1 on the 650,000 km2of outcropping areas of the aquifers, which is consistent with the expected weak and sporadic recharge in this semiarid environment. These variations are also in line with annual rainfall variation with a lag time of about 1 year.

[1]  B. Chao,et al.  Acceleration signal in GRACE time-variable gravity in relation to interannual hydrological changes , 2011 .

[2]  J. Michelot,et al.  Chlorine-36 dating of deep groundwater from northern Sahara , 2006 .

[3]  K. Zouari,et al.  Approche hydrogéologique et hydrochimique des échanges hydrodynamiques entre aquifères profond et superficiel du bassin du Djérid, Tunisie , 2006 .

[4]  S. Al‐Gamal An assessment of recharge possibility to North-Western Sahara Aquifer System (NWSAS) using environmental isotopes , 2011 .

[5]  J. Famiglietti,et al.  Satellite-based estimates of groundwater depletion in India , 2009, Nature.

[6]  Catherine Ottlé,et al.  Land water storage variability over West Africa estimated by Gravity Recovery and Climate Experiment (GRACE) and land surface models , 2011 .

[7]  S. Marlet,et al.  Water and salt balance at irrigation scheme scale: A comprehensive approach for salinity assessment in a Saharan oasis , 2009 .

[8]  Matthew Rodell,et al.  Analysis of terrestrial water storage changes from GRACE and GLDAS , 2008 .

[9]  L. Konikow Contribution of global groundwater depletion since 1900 to sea‐level rise , 2011 .

[10]  Guillaume Ramillien,et al.  Basin‐scale, integrated observations of the early 21st century multiyear drought in southeast Australia , 2009 .

[11]  B. Scanlon,et al.  Theme issue on groundwater recharge , 2002 .

[12]  S. Massuel,et al.  Land clearing, climate variability, and water resources increase in semiarid southwest Niger: A review , 2009 .

[13]  Eric Rignot,et al.  Revisiting the Earth's sea-level and energy budgets from 1961 to 2008 , 2011 .

[14]  J. Tarhouni,et al.  Impacts of hydrological changes in the Mediterranean zone: environmental modifications and rural development in the Merguellil catchment, central Tunisia / Un exemple d'évolution hydrologique en Méditerranée: impacts des modifications environnementales et du développement agricole dans le bassin-ver , 2007 .

[15]  Jade Oriane Petersen Traçage isotopique (36CI, 4He, 234U) et modélisation hydrogéologique du Système Aquifère du Sahara Septentrional. Application à la recharge Quaternaire du Continental Intercalaire , 2014 .

[16]  Diana M. Allen,et al.  Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data , 2011 .

[17]  M. Besbes,et al.  Définition d’un réseau de surveillance piézométrique du système aquifère du Sahara septentrional , 2007 .

[18]  I. Simmers,et al.  Groundwater recharge: an overview of processes and challenges , 2002 .

[19]  W. Edmunds,et al.  Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/hyp.6335 Global synthesis of groundwater recharge in semiarid andaridregions , 2022 .

[20]  W. Avery,et al.  Recharge characteristics of a phreatic aquifer as determined by storage accumulation , 2000 .

[21]  D. Stonestrom,et al.  The feasibility of recharge rate determinations using the steady-state centrifuge method , 1994 .

[22]  Alexander Y. Sun,et al.  Inferring aquifer storage parameters using satellite and in situ measurements: Estimation under uncertainty , 2010 .

[23]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[24]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[25]  Y. Hamed,et al.  Geochemical and isotopic composition of groundwater in the Complex Terminal aquifer in southwestern Tunisia, with emphasis on the mixing by vertical leakage , 2011 .

[26]  B. Scanlon,et al.  Comparison of seasonal terrestrial water storage variations from GRACE with groundwater‐level measurements from the High Plains Aquifer (USA) , 2007 .

[27]  B. Scanlon,et al.  GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA , 2010 .

[28]  S. Seneviratne,et al.  Basin scale estimates of evapotranspiration using GRACE and other observations , 2004 .