SeTraStream: Semantic-Aware Trajectory Construction over Streaming Movement Data

Location data generated from GPS equipped moving objects are typically collected as streams of spatiotemporal 〈x, y, t〉 points that when put together form corresponding trajectories. Most existing studies focus on building ad-hoc querying, analysis, as well as data mining techniques on formed trajectories. As a prior step, trajectory construction is evidently necessary for mobility data processing and understanding, including tasks like trajectory data cleaning, compression, and segmentation so as to identify semantic trajectory episodes like stops (e.g. while sitting and standing) and moves (while jogging, walking, driving etc). However, semantic trajectory construction methods in the current literature are typically based on offline procedures, which is not sufficient for real life trajectory applications that rely on timely delivery of computed trajectories to serve real-time query answers. Filling this gap, our paper proposes a platform, namely SeTraStream, for online semantic trajectory construction. Our framework is capable of providing real-time trajectory data cleaning, compression, segmentation over streaming movement data.

[1]  D. Gática-Pérez,et al.  Towards rich mobile phone datasets: Lausanne data collection campaign , 2010 .

[2]  Kay W. Axhausen,et al.  Processing Raw Data from Global Positioning Systems without Additional Information , 2009 .

[3]  Valéria Cesário Times,et al.  DB-SMoT: A direction-based spatio-temporal clustering method , 2010, 2010 5th IEEE International Conference Intelligent Systems.

[4]  Christian S. Jensen,et al.  Discovery of convoys in trajectory databases , 2008, Proc. VLDB Endow..

[5]  Jan Chomicki,et al.  Hippo: A System for Computing Consistent Answers to a Class of SQL Queries , 2004, EDBT.

[6]  Nikos Giatrakos,et al.  PAO: power-efficient attribution of outliers in wireless sensor networks , 2010, DMSN '10.

[7]  Nikos Pelekis,et al.  Building real-world trajectory warehouses , 2008, MobiDE '08.

[8]  Amol Deshpande,et al.  Online Filtering, Smoothing and Probabilistic Modeling of Streaming data , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[9]  Maike Buchin,et al.  An algorithmic framework for segmenting trajectories based on spatio-temporal criteria , 2010, GIS '10.

[10]  Vania Bogorny,et al.  A model for enriching trajectories with semantic geographical information , 2007, GIS.

[11]  Stefano Spaccapietra,et al.  Automatic construction and multi-level visualization of semantic trajectories , 2010, GIS '10.

[12]  Yannis Theodoridis,et al.  TACO: tunable approximate computation of outliers in wireless sensor networks , 2010, SIGMOD Conference.

[13]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[14]  Fabio Porto,et al.  A conceptual view on trajectories , 2008, Data Knowl. Eng..

[15]  Gregory Piatetsky-Shapiro,et al.  Advances in Knowledge Discovery and Data Mining , 2004, Lecture Notes in Computer Science.

[16]  Randall Guensler,et al.  Smoothing Methods to Minimize Impact of Global Positioning System Random Error on Travel Distance, Speed, and Acceleration Profile Estimates , 2006 .

[17]  Xing Xie,et al.  Understanding transportation modes based on GPS data for web applications , 2010, TWEB.

[18]  Thomas K. Peucker,et al.  2. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its Caricature , 2011 .

[19]  Dieter Pfoser,et al.  On Map-Matching Vehicle Tracking Data , 2005, VLDB.

[20]  Timos K. Sellis,et al.  Sampling Trajectory Streams with Spatiotemporal Criteria , 2006, 18th International Conference on Scientific and Statistical Database Management (SSDBM'06).

[21]  Nirvana Meratnia,et al.  Spatiotemporal Compression Techniques for Moving Point Objects , 2004, EDBT.

[22]  Chengyang Zhang,et al.  Advances in Spatial and Temporal Databases , 2015, Lecture Notes in Computer Science.

[23]  Nikos Pelekis,et al.  Trajectory Compression under Network Constraints , 2009, SSTD.

[24]  Stefano Spaccapietra,et al.  A Hybrid Model and Computing Platform for Spatio-semantic Trajectories , 2010, ESWC.

[25]  Ouri Wolfson,et al.  Spatio-temporal data reduction with deterministic error bounds , 2003, DIALM-POMC '03.

[26]  K. W. Axhausen,et al.  Processing GPS raw data without additional information , 2022 .

[27]  Eamonn J. Keogh,et al.  An online algorithm for segmenting time series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[28]  Alex Delis,et al.  Robust management of outliers in sensor network aggregate queries , 2007, MobiDE '07.

[29]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[30]  Jiawei Han,et al.  Mining periodic behaviors for moving objects , 2010, KDD.

[31]  Nikos Pelekis,et al.  HERMES: aggregative LBS via a trajectory DB engine , 2008, SIGMOD Conference.

[32]  Ralf Hartmut Güting,et al.  Moving Objects Databases , 2005 .

[33]  Alex Delis,et al.  Another Outlier Bites the Dust: Computing Meaningful Aggregates in Sensor Networks , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[34]  Vania Bogorny,et al.  A clustering-based approach for discovering interesting places in trajectories , 2008, SAC '08.

[35]  Lora Aroyo,et al.  The Semantic Web: Research and Applications , 2009, Lecture Notes in Computer Science.

[36]  Stefano Spaccapietra,et al.  SeMiTri: a framework for semantic annotation of heterogeneous trajectories , 2011, EDBT/ICDT '11.

[37]  Philip S. Yu,et al.  Mining Frequent Patterns in Data Streams at Multiple Time Granularities , 2002 .

[38]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.