An Algorithm for the Global Optimization of a Class of Continuous Minimax Problems

We propose an algorithm for the global optimization of continuous minimax problems involving polynomials. The method can be described as a discretization approach to the well known semi-infinite formulation of the problem. We proceed by approximating the infinite number of constraints using tools and techniques from semidefinite programming. We then show that, under appropriate conditions, the SDP approximation converges to the globally optimal solution of the problem. We also discuss the numerical performance of the method on some test problems.

[1]  Olga Taussky-Todd SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .

[2]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[3]  E. M. L. Beale,et al.  Nonlinear Programming: A Unified Approach. , 1970 .

[4]  Markus Schweighofer,et al.  Optimization of Polynomials on Compact Semialgebraic Sets , 2005, SIAM J. Optim..

[5]  Masakazu Kojima,et al.  Generalized Lagrangian Duals and Sums of Squares Relaxations of Sparse Polynomial Optimization Problems , 2005, SIAM J. Optim..

[6]  W. Hogan Point-to-Set Maps in Mathematical Programming , 1973 .

[7]  J. E. Falk,et al.  Infinitely constrained optimization problems , 1976 .

[8]  Hans-Jakob Lüthi,et al.  Algorithms for Worst-Case Design and Applications to Risk Management , 2003 .

[9]  B. Rustem,et al.  Convergence of an Interior Point Algorithm for Continuous Minimax , 2008 .

[10]  V. F. Demʹi︠a︡nov,et al.  Introduction to minimax , 1976 .

[11]  Berç Rustem,et al.  An Interior Point Algorithm for Computing Saddle Points of Constrained Continuous Minimax , 2000, Ann. Oper. Res..

[12]  Charles N. Delzell,et al.  Positive Polynomials on Semialgebraic Sets , 2001 .

[13]  Berç Rustem,et al.  An Algorithm for the Inequality-Constrained Discrete Min-Max Problem , 1998, SIAM J. Optim..

[14]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[15]  J. Lasserre,et al.  Detecting global optimality and extracting solutions in GloptiPoly , 2003 .

[16]  A. Garulli,et al.  Positive Polynomials in Control , 2005 .

[17]  Oliver Stein,et al.  Solving Semi-Infinite Optimization Problems with Interior Point Techniques , 2003, SIAM J. Control. Optim..

[18]  Rekha R. Thomas,et al.  Algebraic and geometric methods in discrete optimization , 2003, Math. Program..

[19]  V. Powers,et al.  An algorithm for sums of squares of real polynomials , 1998 .

[20]  Charles N. Delzell,et al.  Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra , 2001 .

[21]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[22]  Charles N. Delzell,et al.  Real Algebraic Geometry and Ordered Structures , 2000 .

[23]  Berç Rustem,et al.  Semi-Infinite Programming and Applications to Minimax Problems , 2003, Ann. Oper. Res..