Application of Manifold Corrections in Tidal Evolution of Exoplanetary Systems

The discovery of numerous close-in planets has updated our knowledge of planet formation. The tidal interaction between planets and host stars has a significant impact on the orbital and rotational evolution of the close planets. Tidal evolution usually takes a long time and requires reliable numerical methods. The manifold correction method, which strictly satisfies the integrals dissipative quasiintegrals of the system, exhibits good numerical accuracy and stability in the quasi-Kepler problem. Different manifold correction methods adopt different integrals or integral invariant relations to correct the numerical solutions. We apply the uncorrected five- and six-order Runge–Kutta–Fehlberg algorithm [RKF5(6)], as well as corrected by the velocity scaling method and Fukushima’s linear transformation method to solve the tidal evolution of exoplanet systems. The results show that Fukushima’s linear transformation method exhibits the best performance in the accuracy of the semimajor axis and eccentricity. In addition, we predict the tidal timescale of several current close exoplanetary systems by using this method.

[1]  W. Han,et al.  Explicit Symplectic Methods in Black Hole Spacetimes , 2022, The Astrophysical Journal.

[2]  Shiyang Hu,et al.  Construction of a Second-order Six-dimensional Hamiltonian-conserving Scheme , 2021, The Astrophysical Journal Supplement Series.

[3]  Xin Wu,et al.  Construction of Explicit Symplectic Integrators in General Relativity. IV. Kerr Black Holes , 2021, 2106.12356.

[4]  Xin Wu,et al.  Construction of Explicit Symplectic Integrators in General Relativity. III. Reissner–Nordström-(anti)-de Sitter Black Holes , 2021, The Astrophysical Journal Supplement Series.

[5]  Xin Wu,et al.  Construction of Explicit Symplectic Integrators in General Relativity. II. Reissner–Nordström Black Holes , 2021, 2103.02864.

[6]  Shiyang Hu,et al.  An Energy-conserving Integrator for Conservative Hamiltonian Systems with Ten-dimensional Phase Space , 2021, The Astrophysical Journal Supplement Series.

[7]  Xin Wu,et al.  Construction of Explicit Symplectic Integrators in General Relativity. I. Schwarzschild Black Holes , 2021, 2102.00373.

[8]  Xin Wu,et al.  The use of Kepler solver in numerical integrations of quasi-Keplerian orbits , 2020 .

[9]  Shiyang Hu,et al.  A Novel Energy-conserving Scheme for Eight-dimensional Hamiltonian Problems , 2019, The Astrophysical Journal.

[10]  G. Laughlin,et al.  Obliquity Tides May Drive WASP-12b’s Rapid Orbital Decay , 2018, The Astrophysical Journal.

[11]  Xin Wu,et al.  Chaotic motion of neutral and charged particles in a magnetized Ernst-Schwarzschild spacetime , 2018, The European Physical Journal Plus.

[12]  Xin Wu,et al.  Simulations of Dissipative Circular Restricted Three-body Problems Using the Velocity-scaling Correction Method , 2018 .

[13]  Xin Wu,et al.  EXPLICIT SYMPLECTIC-LIKE INTEGRATORS WITH MIDPOINT PERMUTATIONS FOR SPINNING COMPACT BINARIES , 2017 .

[14]  Xin Wu,et al.  Implementation of the velocity scaling method for elliptic restricted three-body problems , 2016 .

[15]  Xin Wu,et al.  Second post-Newtonian Lagrangian dynamics of spinning compact binaries , 2016, 1604.05810.

[16]  Pauli Pihajoki,et al.  Explicit methods in extended phase space for inseparable Hamiltonian problems , 2014, 1411.3367.

[17]  Xin Wu,et al.  Chaos in two black holes with next-to-leading order spin–spin interactions , 2014, 1403.0378.

[18]  Xin Wu,et al.  Dynamics of spin effects of compact binaries , 2013 .

[19]  Xin Wu,et al.  On preference of Yoshida construction over Forest–Ruth fourth-order symplectic algorithm , 2013 .

[20]  H. Hussmann,et al.  Spin-orbit Coupling for Tidally Evolving Super-Earths , 2012, 1209.1580.

[21]  J. Laskar,et al.  Tidal dissipation in multi-planet systems and constraints on orbit fitting , 2011, 1110.4565.

[22]  S. Ferraz-Mello,et al.  Tidal decay and orbital circularization in close-in two-planet systems , 2011, 1104.0964.

[23]  D. Sasselov,et al.  TIDAL EVOLUTION OF CLOSE-IN EXTRASOLAR PLANETS: HIGH STELLAR Q FROM NEW THEORETICAL MODELS , 2011, 1102.3187.

[24]  R. Mardling,et al.  The determination of planetary structure in tidally relaxed inclined systems , 2010, 1001.4079.

[25]  Xin Wu,et al.  A velocity scaling method with least-squares correction of several constraints , 2009 .

[26]  R. Greenberg,et al.  OBSERVATIONAL EVIDENCE FOR TIDAL DESTRUCTION OF EXOPLANETS , 2009, 0904.1170.

[27]  J. Laskar,et al.  Mercury's capture into the 3/2 spin–orbit resonance including the effect of core–mantle friction , 2009, 0901.1843.

[28]  Xin Wu,et al.  Extending Nacozy’s Approach to Correct All Orbital Elements for Each of Multiple Bodies , 2008 .

[29]  Xin Wu,et al.  Velocity scaling method to correct individual Kepler energies , 2008 .

[30]  Richard Greenberg,et al.  Tidal Heating of Extrasolar Planets , 2008, 0803.0026.

[31]  E. Kokubo,et al.  Formation of Terrestrial Planets from Protoplanets. II. Statistics of Planetary Spin , 2007 .

[32]  H. Hussmann,et al.  Tidal friction in close-in satellites and exoplanets: The Darwin theory re-visited , 2007, 0712.1156.

[33]  R. Greenberg,et al.  Tidal Evolution of Close-in Extrasolar Planets , 2007, Proceedings of the International Astronomical Union.

[34]  D. Lin,et al.  Migration and Final Location of Hot Super Earths in the Presence of Gas Giants , 2007, Proceedings of the International Astronomical Union.

[35]  R. Mardling,et al.  Long-term tidal evolution of short-period planets with companions , 2007, 0706.0224.

[36]  T. Fukushima Efficient Integration of Highly Eccentric Orbits by Scaling Methods Applied to Kustaanheimo-Stiefel Regularization , 2004 .

[37]  Ludmila Carone,et al.  Tidal interactions of close-in extrasolar planets: The OGLE cases , 2004, astro-ph/0408328.

[38]  Jacques Laskar,et al.  Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics , 2004, Nature.

[39]  T. Fukushima Efficient Orbit Integration by Linear Transformation for Consistency of Kepler Energy, Full Laplace Integral, and Angular Momentum Vector , 2004 .

[40]  T. Fukushima Efficient Orbit Integration by Scaling and Rotation for Consistency of Kepler Energy, Laplace Integral, and Angular Momentum Direction , 2003 .

[41]  T. Fukushima Efficient Orbit Integration by Dual Scaling for Consistency of Kepler Energy and Laplace Integral , 2003 .

[42]  T. Fukushima Efficient Orbit Integration by Scaling for Kepler Energy Consistency , 2003 .

[43]  D. Lin,et al.  Calculating the Tidal, Spin, and Dynamical Evolution of Extrasolar Planetary Systems , 2002 .

[44]  P. Goldreich,et al.  Tidal Evolution of the Planetary System around HD 83443 , 2001, astro-ph/0108499.

[45]  Harold F. Levison,et al.  On the Character and Consequences of Large Impacts in the Late Stage of Terrestrial Planet Formation , 1999 .

[46]  M. Livio,et al.  Tidal decay of close planetary orbits , 1996, astro-ph/9605059.

[47]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[48]  Lin Liu,et al.  Numerical calculations in the orbital determination of an artificial satellite for a long arc , 1994 .

[49]  Lin Liu,et al.  On several problems in the numerical integration of celestial orbits , 1988 .

[50]  F. Mignard The evolution of the lunar orbit revisited. I , 1979 .

[51]  J. Baumgarte,et al.  Numerical stabilization of the differential equations of Keplerian motion , 1972 .

[52]  Peter Goldreich,et al.  Spin-orbit coupling in the solar system , 1966 .

[53]  P. Goldreich Final spin states of planets and satellites. , 1966 .

[54]  W. M. Kaula Tidal dissipation by solid friction and the resulting orbital evolution , 1964 .

[55]  T. Gold,et al.  On the Eccentricity of Satellite Orbits in the Solar System , 1963 .

[56]  G. Beutler Methods of celestial mechanics , 2005 .

[57]  H. Jeffreys Tidal Friction , 1973, Nature.

[58]  P. Nacozy The use of integrals in numerical integrations of theN-body problem , 1971 .

[59]  Steven Soter,et al.  Q in the solar system , 1966 .

[60]  G. Darwin XX. On the secular changes in the elements of the orbit of a satellite revolving about a tidally distorted planet , 1880, Philosophical Transactions of the Royal Society of London.

[61]  George Howard Darwin,et al.  VIII. The determination of the secular effects of tidal friction by a graphical method , 1879, Proceedings of the Royal Society of London.