Necessary conditions for extended noncontextuality in general sets of random variables

We explore the graph approach to contextuality to restate the extended definition of noncontextuality as given by J. Kujala et. al. [Phys. Rev. Lett. 115, 150401 (2015)] using graph-theoretical terms. This extended definition avoids the assumption of the pre-sheaf or non-disturbance condition, which states that if two contexts overlap, then the marginal distribution obtained for the intersection must be the same, a restriction that will never be perfectly satisfied in real experiments. With this we are able to derive necessary conditions for extended noncontextuality for any set of random variables based on the geometrical aspects of the graph approach, which can be tested directly with experimental data in any contextuality experiment and which reduce to traditional necessary conditions for noncontextuality if the non-disturbance condition is satisfied.

[1]  E. Specker DIE LOGIK NICHT GLEICHZEITIG ENTSC HEIDBARER AUSSAGEN , 1960 .

[2]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[3]  P. Pearle Hidden-Variable Example Based upon Data Rejection , 1970 .

[4]  M. Froissart Constructive generalization of Bell’s inequalities , 1981 .

[5]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[6]  Ali Ridha Mahjoub,et al.  On the cut polytope , 1986, Math. Program..

[7]  A. Peres Incompatible results of quantum measurements , 1990 .

[8]  Mermin,et al.  Simple unified form for the major no-hidden-variables theorems. , 1990, Physical review letters.

[9]  S. Braunstein,et al.  Wringing out better bell inequalities , 1990 .

[10]  Mermin Nd Simple unified form for the major no-hidden-variables theorems. , 1990 .

[11]  Itamar Pitowsky,et al.  Correlation polytopes: Their geometry and complexity , 1991, Math. Program..

[12]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[13]  Jan-Åke Larsson A Kochen-Specker inequality , 2000, quant-ph/0006134.

[14]  Sebastiano Vigna,et al.  Fibrations of graphs , 2002, Discret. Math..

[15]  N. Gisin,et al.  A relevant two qubit Bell inequality inequivalent to the CHSH inequality , 2003, quant-ph/0306129.

[16]  D. Avis,et al.  On the relationship between convex bodies related to correlation experiments with dichotomic observables , 2006, quant-ph/0605148.

[17]  R. Loidl,et al.  Quantum contextuality in a single-neutron optical experiment. , 2006, Physical review letters.

[18]  Tsuyoshi Ito,et al.  Generating facets for the cut polytope of a graph by triangular elimination , 2008, Math. Program..

[19]  O. Gühne,et al.  State-independent experimental test of quantum contextuality , 2009, Nature.

[20]  P. Badziag,et al.  Universality of state-independent violation of correlation inequalities for noncontextual theories. , 2008, Physical review letters.

[21]  M. Bourennane,et al.  State-independent quantum contextuality with single photons. , 2009, Physical review letters.

[22]  Samson Abramsky,et al.  The sheaf-theoretic structure of non-locality and contextuality , 2011, 1102.0264.

[23]  A. Zeilinger,et al.  Experimental non-classicality of an indivisible quantum system , 2011, Nature.

[24]  Lars Erik Würflinger,et al.  Quantum correlations require multipartite information principles. , 2011, Physical review letters.

[25]  C. H. Oh,et al.  State-independent proof of Kochen-Specker theorem with 13 rays. , 2011, Physical review letters.

[26]  Xiang Zhang,et al.  Experimental Certification of Random Numbers via Quantum Contextuality , 2013, Scientific Reports.

[27]  R. Raussendorf Quantum computation, discreteness, and contextuality , 2009 .

[28]  T. Fritz,et al.  A Combinatorial Approach to Nonlocality and Contextuality , 2012, Communications in Mathematical Physics.

[29]  Marco T'ulio Quintino,et al.  All noncontextuality inequalities for the n-cycle scenario , 2012, 1206.3212.

[30]  M. T. Cunha,et al.  Experimental Test of the Quantum Violation of the Noncontextuality Inequalities for the n-Cycle Scenario , 2013, 1304.4512.

[31]  A. Cabello Simple explanation of the quantum violation of a fundamental inequality. , 2012, Physical review letters.

[32]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[33]  Victor Veitch,et al.  Contextuality supplies the ‘magic’ for quantum computation , 2014, Nature.

[34]  M. T. Cunha,et al.  Multigraph approach to quantum non-locality , 2014, 1407.5340.

[35]  Bob W. Rink,et al.  Graph fibrations and symmetries of network dynamics , 2014, 1410.6021.

[36]  M. T. Cunha,et al.  Exclusivity principle forbids sets of correlations larger than the quantum set. , 2013, 1306.6289.

[37]  Michael Jünger,et al.  Lifting and separation procedures for the cut polytope , 2014, Math. Program..

[38]  R. Raussendorf,et al.  Wigner Function Negativity and Contextuality in Quantum Computation on Rebits , 2014, 1409.5170.

[39]  A. Winter What does an experimental test of quantum contextuality prove or disprove? , 2014, 1408.0945.

[40]  A. Winter,et al.  Graph-theoretic approach to quantum correlations. , 2014, Physical review letters.

[41]  Jan-Åke Larsson,et al.  Necessary and Sufficient Conditions for an Extended Noncontextuality in a Broad Class of Quantum Mechanical Systems. , 2014, Physical review letters.

[42]  Chi Zhang,et al.  Sustained State-Independent Quantum Contextual Correlations from a Single Ion. , 2017, Physical review letters.