A Census of Tetrahedral Hyperbolic Manifolds

ABSTRACT We call a cusped hyperbolic 3-manifold tetrahedral if it can be decomposed into regular ideal tetrahedra. Following an earlier publication by three of the authors, we give a census of all tetrahedral manifolds and all of their combinatorial tetrahedral tessellations with at most 25 (orientable case) and 21 (non-orientable case) tetrahedra. Our isometry classification uses certified canonical cell decompositions (based on work by Dunfield, Hoffman, and Licata) and isomorphism signatures (an improvement of dehydration sequences by Burton). The tetrahedral census comes in Regina as well as SnapPy format, and we illustrate its features.

[1]  Neil R. Hoffman Commensurability classes containing three knot complements , 2009, 0905.1672.

[2]  Igor Nikolaev Arithmetic of hyperbolic 3-manifolds , 2002 .

[3]  John Luecke,et al.  Knots are determined by their complements , 1989 .

[4]  Marco Reni,et al.  Hidden Symmetries of Cyclic Branched Coverings of 2-Bridge Knots , 2001 .

[5]  Angelika Königseder,et al.  Walter de Gruyter , 2016 .

[6]  A. Vesnin,et al.  On the complexity of three-dimensional cusped hyperbolic manifolds , 2014 .

[7]  R. Tennant Algebra , 1941, Nature.

[8]  Walter D. Neumann,et al.  Arithmetic of Hyperbolic Manifolds , 1992 .

[9]  S. Anisov Exact Values of Complexity for an Infinite Number of 3-Manifolds , 2005 .

[10]  A. Reid Arithmeticity of Knot Complements , 1991 .

[11]  G. E. Bredon Topology and geometry , 1993 .

[12]  Neil R. Hoffman,et al.  Asymmetric hyperbolic L-spaces, Heegaard genus, and Dehn filling , 2014, 1407.7827.

[13]  Benjamin A. Burton Simplification paths in the Pachner graphs of closed orientable 3-manifold triangulations , 2011, ArXiv.

[14]  Benjamin A. Burton The pachner graph and the simplification of 3-sphere triangulations , 2010, SoCG '11.

[15]  Sergei Matveev,et al.  Algorithmic Topology and Classification of 3-Manifolds , 2003 .

[16]  Shin'ichi Oishi,et al.  Verified Computations for Hyperbolic 3-Manifolds , 2013, Exp. Math..

[17]  Walter D. Neumann,et al.  Notes on Adams' Small Volume Orbifolds , 1992 .

[18]  R. C. Penner,et al.  Euclidean decompositions of noncompact hyperbolic manifolds , 1988 .

[19]  C. Petronio,et al.  Exceptional Dehn surgery on the minimally twisted five-chain link , 2011, 1109.0903.

[21]  F. Luo,et al.  Geodesic ideal triangulations exist virtually , 2007, math/0701431.

[22]  J. Weeks Convex hulls and isometries of cusped hyperbolic 3-manifolds , 1993 .

[23]  Benjamin A. Burton A Duplicate Pair in the SnapPea Census , 2013, Exp. Math..

[24]  B. Bowditch,et al.  Arithmetic hyperbolic surface bundles , 1995 .

[25]  I. Aitchison,et al.  Combinatorial Cubings, Cusps, and the Dodecahedral Knots , 1992 .

[26]  J. Vries De Gruyter Studies in Mathematics , 2014, USCO and Quasicontinuous Mappings.

[27]  J. Weeks,et al.  Partially flat ideal triangulations of cusped hyperbolic 3-manifolds , 2000 .

[28]  Matthias Görner,et al.  Regular Tessellation Link Complements , 2014, Exp. Math..

[29]  Jeffrey R. Weeks,et al.  A census of cusped hyperbolic 3-manifolds , 1999, Math. Comput..

[30]  Oliver Goodman,et al.  Commensurators of Cusped Hyperbolic Manifolds , 2008, Exp. Math..

[31]  Benjamin A. Burton,et al.  An Edge-Based Framework for Enumerating 3-Manifold Triangulations , 2014, SoCG.