Brain transcriptome atlases: a computational perspective

The immense complexity of the mammalian brain is largely reflected in the underlying molecular signatures of its billions of cells. Brain transcriptome atlases provide valuable insights into gene expression patterns across different brain areas throughout the course of development. Such atlases allow researchers to probe the molecular mechanisms which define neuronal identities, neuroanatomy, and patterns of connectivity. Despite the immense effort put into generating such atlases, to answer fundamental questions in neuroscience, an even greater effort is needed to develop methods to probe the resulting high-dimensional multivariate data. We provide a comprehensive overview of the various computational methods used to analyze brain transcriptome atlases.

[1]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[2]  Kenny Q. Ye,et al.  De Novo Gene Disruptions in Children on the Autistic Spectrum , 2012, Neuron.

[3]  John S. Satterlee,et al.  Molecular neuroanatomy: a generation of progress , 2014, Trends in Neurosciences.

[4]  Eyal Ben-David,et al.  Networks of Neuronal Genes Affected by Common and Rare Variants in Autism Spectrum Disorders , 2012, PLoS genetics.

[5]  Lydia Ng,et al.  Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. , 2010, Methods.

[6]  Leon French,et al.  Informatics in neuroscience , 2007, Briefings Bioinform..

[7]  John G Hohmann,et al.  Expression Profiling of the Solute Carrier Gene Family in the Mouse Brain , 2009, Journal of Pharmacology and Experimental Therapeutics.

[8]  Peter B. Jones,et al.  373. Adolescence is Associated with Genomically Patterned Consolidation of the Hubs of the Human Brain Connectome , 2016, Biological Psychiatry.

[9]  Inyoul Y. Lee,et al.  Systems approach to neurodegenerative disease biomarker discovery. , 2014, Annual review of pharmacology and toxicology.

[10]  Christine Van Broeckhoven,et al.  Genetic insights in Alzheimer's disease , 2013, The Lancet Neurology.

[11]  René S. Kahn,et al.  Connectome Disconnectivity and Cortical Gene Expression in Patients With Schizophrenia , 2017, Biological Psychiatry.

[12]  Kathryn Roeder,et al.  De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder. , 2014, Cell reports.

[13]  J. Kleinman,et al.  Spatiotemporal transcriptome of the human brain , 2011, Nature.

[14]  Allan R. Jones,et al.  An anatomic gene expression atlas of the adult mouse brain , 2009, Nature Neuroscience.

[15]  Mert R. Sabuncu,et al.  Joint Modeling of Imaging and Genetics , 2013, IPMI.

[16]  M. Mehler,et al.  Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease , 2012, Nature Reviews Neuroscience.

[17]  Peter J. Park,et al.  Somatic mutation in single human neurons tracks developmental and transcriptional history , 2015, Science.

[18]  Allan R. Jones,et al.  Comprehensive transcriptional map of primate brain development , 2016, Nature.

[19]  Núria Queralt-Rosinach,et al.  DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes , 2015, Database J. Biol. Databases Curation.

[20]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[21]  Shuiwang Ji,et al.  Automated identification of cell-type-specific genes in the mouse brain by image computing of expression patterns , 2014, BMC Bioinformatics.

[22]  Juan Li,et al.  Reconstruction of the Gene Regulatory Network Involved in the Sonic Hedgehog Pathway with a Potential Role in Early Development of the Mouse Brain , 2014, PLoS Comput. Biol..

[23]  Paul Pavlidis,et al.  Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain , 2013, Front. Neurosci..

[24]  Gary D Bader,et al.  International network of cancer genome projects , 2010, Nature.

[25]  E. Bullmore,et al.  Wiring cost and topological participation of the mouse brain connectome , 2015, Proceedings of the National Academy of Sciences.

[26]  R. Piro,et al.  Evaluation of Candidate Genes from Orphan FEB and GEFS+ Loci by Analysis of Human Brain Gene Expression Atlases , 2011, PloS one.

[27]  L. Tran,et al.  Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer’s Disease , 2013, Cell.

[28]  Allan R. Jones,et al.  Surface-based mapping of gene expression and probabilistic expression maps in the mouse cortex. , 2010, Methods.

[29]  Paul Pavlidis,et al.  Relationships between gene expression and brain wiring in the adult rodent brain , 2011 .

[30]  Andrea Mosca,et al.  PDCD10 Gene Mutations in Multiple Cerebral Cavernous Malformations , 2014, PloS one.

[31]  L. French,et al.  Differential Co-Expression between α-Synuclein and IFN-γ Signaling Genes across Development and in Parkinson’s Disease , 2014, PloS one.

[32]  E. Banks,et al.  De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.

[33]  J. Shendure,et al.  A de novo convergence of autism genetics and molecular neuroscience , 2014, Trends in Neurosciences.

[34]  Arthur W. Toga,et al.  Genomic–anatomic evidence for distinct functional domains in hippocampal field CA1 , 2009, Proceedings of the National Academy of Sciences.

[35]  G. Tseng,et al.  Beyond modules and hubs: the potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders , 2014, Genes, brain, and behavior.

[36]  Marcel J. T. Reinders,et al.  Genomic connectivity networks based on the BrainSpan atlas of the developing human brain , 2014, Medical Imaging.

[37]  M. Eremets,et al.  Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound , 2014, Nature Communications.

[38]  C. Ponting,et al.  Genomic and Transcriptional Co-Localization of Protein-Coding and Long Non-Coding RNA Pairs in the Developing Brain , 2009, PLoS genetics.

[39]  T. Kawamura,et al.  Pathogenesis and neuroimaging of cerebral large and small vessel disease in type 2 diabetes: A possible link between cerebral and retinal microvascular abnormalities , 2016, Journal of diabetes investigation.

[40]  R. Rao,et al.  An inside job: how endosomal Na+/H+ exchangers link to autism and neurological disease , 2014, Front. Cell. Neurosci..

[41]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[42]  Sara Ballouz,et al.  AuPairWise: A Method to Estimate RNA-Seq Replicability through Co-expression , 2016, bioRxiv.

[43]  D. Geschwind,et al.  Correspondence between Resting-State Activity and Brain Gene Expression , 2015, Neuron.

[44]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[45]  R. Houtman,et al.  Understanding stress-effects in the brain via transcriptional signal transduction pathways , 2013, Neuroscience.

[46]  Natasa Przulj,et al.  Biological network comparison using graphlet degree distribution , 2007, Bioinform..

[47]  P. Mcguire,et al.  HPA-axis function and grey matter volume reductions: imaging the diathesis-stress model in individuals at ultra-high risk of psychosis , 2016, Translational psychiatry.

[48]  David M. Miller,et al.  Computational inference of the molecular logic for synaptic connectivity in C. elegans , 2006, ISMB.

[49]  M. Rietschel,et al.  Correlated gene expression supports synchronous activity in brain networks , 2015, Science.

[50]  Michael F. Walker,et al.  De novo mutations revealed by whole-exome sequencing are strongly associated with autism , 2012, Nature.

[51]  Tom R. Gaunt,et al.  The UK10K project identifies rare variants in health and disease , 2016 .

[52]  S. Sunkin,et al.  Specific expression of long noncoding RNAs in the mouse brain , 2008, Proceedings of the National Academy of Sciences.

[53]  Larry W. Swanson,et al.  Collating and curating neuroanatomical nomenclatures : principles and use of the Brain Architecture Knowledge Management System ( BAMS ) , 2010 .

[54]  E. Shapiro,et al.  Single-cell sequencing-based technologies will revolutionize whole-organism science , 2013, Nature Reviews Genetics.

[55]  Peter B. Jones,et al.  Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[56]  Mauro Miazaki,et al.  Study of cerebral gene expression densities using Voronoi analysis , 2012, Journal of Neuroscience Methods.

[57]  Isaac Meilijson,et al.  Gene Expression of Caenorhabditis elegans Neurons Carries Information on Their Synaptic Connectivity , 2006, PLoS Comput. Biol..

[58]  Benjamin A Garcia,et al.  Analytical tools and current challenges in the modern era of neuroepigenomics , 2014, Nature Neuroscience.

[59]  B. Roska,et al.  Cell-Type-Specific Electric Stimulation for Vision Restoration , 2014, Neuron.

[60]  Markus Perola,et al.  Meta-analysis on blood transcriptomic studies identifies consistently coexpressed protein–protein interaction modules as robust markers of human aging , 2013, Aging cell.

[61]  Lydia Ng,et al.  Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system , 2012, Nucleic Acids Res..

[62]  S. Horvath,et al.  Conservation and evolution of gene coexpression networks in human and chimpanzee brains , 2006, Proceedings of the National Academy of Sciences.

[63]  Ahmed Mahfouz,et al.  Visualizing the spatial gene expression organization in the brain through non-linear similarity embeddings. , 2015, Methods.

[64]  Russell A. Poldrack,et al.  Large-scale automated synthesis of human functional neuroimaging data , 2011, Nature Methods.

[65]  Ahmed Mahfouz,et al.  Shared Pathways Among Autism Candidate Genes Determined by Co-expression Network Analysis of the Developing Human Brain Transcriptome , 2015, Journal of Molecular Neuroscience.

[66]  Matthew F. Nolan,et al.  Laminar and Dorsoventral Molecular Organization of the Medial Entorhinal Cortex Revealed by Large-scale Anatomical Analysis of Gene Expression , 2015, PLoS Comput. Biol..

[67]  Gal Chechik,et al.  Specialization of Gene Expression during Mouse Brain Development , 2012, PLoS Comput. Biol..

[68]  Wei Niu,et al.  Coexpression Networks Implicate Human Midfetal Deep Cortical Projection Neurons in the Pathogenesis of Autism , 2013, Cell.

[69]  J. Leek,et al.  Temporal dynamics and genetic control of transcription in the human prefrontal cortex , 2011, Nature.

[70]  Peggy Hall,et al.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations , 2013, Nucleic Acids Res..

[71]  Leon French,et al.  Relationships between Gene Expression and Brain Wiring in the Adult Rodent Brain , 2011, PLoS Comput. Biol..

[72]  P. Thompson,et al.  Multilocus Genetic Analysis of Brain Images , 2011, Front. Gene..

[73]  John Morris,et al.  Multi-scale correlation structure of gene expression in the brain , 2011, Neural Networks.

[74]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[75]  Shiaoching Gong,et al.  A gene expression atlas of the central nervous system based on bacterial artificial chromosomes , 2003, Nature.

[76]  E. Ben-David,et al.  Combined analysis of exome sequencing points toward a major role for transcription regulation during brain development in autism , 2013, Molecular Psychiatry.

[77]  A. Reymond,et al.  A High-Resolution Anatomical Atlas of the Transcriptome in the Mouse Embryo , 2011, PLoS biology.

[78]  Guo-Cheng Yuan,et al.  Single-Cell Analysis in Cancer Genomics. , 2015, Trends in genetics : TIG.

[79]  Michael Hawrylycz,et al.  Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain , 2015, Front. Comput. Neurosci..

[80]  D. Valle,et al.  Online Mendelian Inheritance In Man (OMIM) , 2000, Human mutation.

[81]  John C. Marioni,et al.  Identifying Cell Types from Spatially Referenced Single-Cell Expression Datasets , 2014, PLoS Comput. Biol..

[82]  S. Quake,et al.  A survey of human brain transcriptome diversity at the single cell level , 2015, Proceedings of the National Academy of Sciences.

[83]  Raghu Machiraju,et al.  An integrative analysis of regional gene expression profiles in the human brain. , 2015, Methods.

[84]  Lin Song,et al.  Comparison of co-expression measures: mutual information, correlation, and model based indices , 2012, BMC Bioinformatics.

[85]  Gal Chechik,et al.  Localizing Genes to Cerebellar Layers by Classifying ISH Images , 2012, PLoS Comput. Biol..

[86]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[87]  Lydia Ng,et al.  Areal and laminar differentiation in the mouse neocortex using large scale gene expression data. , 2010, Methods.

[88]  Tao Jiang,et al.  Study of gene function based on spatial co-expression in a high-resolution mouse brain atlas , 2007, BMC Systems Biology.

[89]  Luigi Ferrucci,et al.  Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in Human Brain , 2010, PLoS genetics.

[90]  N. Heintz Gene Expression Nervous System Atlas (GENSAT) , 2004, Nature Neuroscience.

[91]  N. Risch,et al.  A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records , 2016, PLoS genetics.

[92]  Partha P. Mitra,et al.  Co-expression Profiling of Autism Genes in the Mouse Brain , 2013, PLoS Comput. Biol..

[93]  Robert Andrews,et al.  Inter-individual variability contrasts with regional homogeneity in the human brain DNA methylome , 2015, Nucleic acids research.

[94]  Neda Jahanshad,et al.  Whole-genome analyses of whole-brain data: working within an expanded search space , 2014, Nature Neuroscience.

[95]  Shuiwang Ji,et al.  Integrative analysis of the connectivity and gene expression atlases in the mouse brain , 2014, NeuroImage.

[96]  L. French,et al.  Transcriptomic-anatomic analysis of the mouse habenula uncovers a high molecular heterogeneity among neurons in the lateral complex, while gene expression in the medial complex largely obeys subnuclear boundaries , 2014, Brain Structure and Function.

[97]  David Sankoff,et al.  Structural vs. functional mechanisms of duplicate gene loss following whole genome doubling , 2015, BMC Bioinformatics.

[98]  Shannon L. Risacher,et al.  Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning , 2012, Bioinform..

[99]  Joshua M. Stuart,et al.  A Gene Expression Map for Caenorhabditis elegans , 2001, Science.

[100]  S. Horvath,et al.  Integrative Functional Genomic Analyses Implicate Specific Molecular Pathways and Circuits in Autism , 2013, Cell.

[101]  Alexander E. Kel,et al.  TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes , 2005, Nucleic Acids Res..

[102]  Jay Shendure,et al.  Disruptive CHD8 Mutations Define a Subtype of Autism Early in Development , 2014, Cell.

[103]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[104]  Leon French,et al.  A FreeSurfer view of the cortical transcriptome generated from the Allen Human Brain Atlas , 2015, Front. Neurosci..

[105]  H. Wandall,et al.  Fast and sensitive detection of indels induced by precise gene targeting , 2015, Nucleic acids research.

[106]  T. Maniatis,et al.  An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex , 2014, The Journal of Neuroscience.

[107]  A. Björklund,et al.  Dopamine neuron systems in the brain: an update , 2007, Trends in Neurosciences.

[108]  James A. Eddy,et al.  Cell type-specific genes show striking and distinct patterns of spatial expression in the mouse brain , 2013, Proceedings of the National Academy of Sciences.

[109]  Evan T. Geller,et al.  Patterns and rates of exonic de novo mutations in autism spectrum disorders , 2012, Nature.

[110]  Thomas E. Nichols,et al.  Common genetic variants influence human subcortical brain structures , 2015, Nature.

[111]  Julie H. Simpson,et al.  BrainAligner: 3D Registration Atlases of Drosophila Brains , 2011, Nature Methods.

[112]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[113]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[114]  Ben D. Fulcher,et al.  A transcriptional signature of hub connectivity in the mouse connectome , 2016, Proceedings of the National Academy of Sciences.

[115]  Elhanan Borenstein,et al.  The discovery of integrated gene networks for autism and related disorders , 2015, Genome research.

[116]  Leon French,et al.  Large-Scale Analysis of Gene Expression and Connectivity in the Rodent Brain: Insights through Data Integration , 2011, Front. Neuroinform..

[117]  S. Nelson,et al.  Cell-type–based model explaining coexpression patterns of genes in the brain , 2011, Proceedings of the National Academy of Sciences.

[118]  Mingfeng Li,et al.  Temporal Specification and Bilaterality of Human Neocortical Topographic Gene Expression , 2014, Neuron.

[119]  Leslie M. Loew,et al.  Computational neurobiology is a useful tool in translational neurology: the example of ataxia , 2014, Front. Neurosci..

[120]  Juan Carlos Fernández,et al.  Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms , 2014, Ann. Oper. Res..

[121]  Owen M. Rennert,et al.  Identification of Differentially Expressed MicroRNAs Across the Developing Human Brain , 2013, Molecular Psychiatry.

[122]  Jieping Ye,et al.  Deep convolutional neural networks for annotating gene expression patterns in the mouse brain , 2015, BMC Bioinformatics.

[123]  Shuiwang Ji,et al.  A Probabilistic Latent Semantic Analysis Model for Coclustering the Mouse Brain Atlas , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[124]  Gregor Eichele,et al.  GenePaint.org: an atlas of gene expression patterns in the mouse embryo , 2004, Nucleic Acids Res..

[125]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[126]  Rolf A Heckemann,et al.  The Predictive Power of Brain mRNA Mappings for in vivo Protein Density: A Positron Emission Tomography Correlation Study , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[127]  Julie Moss,et al.  EMAGE mouse embryo spatial gene expression database: 2014 update , 2013, Nucleic Acids Res..

[128]  Christopher S. Poultney,et al.  Synaptic, transcriptional, and chromatin genes disrupted in autism , 2014, Nature.

[129]  Nicholas Burton,et al.  The Virtual Fly Brain browser and query interface , 2012, Bioinform..

[130]  S. Horvath,et al.  A General Framework for Weighted Gene Co-Expression Network Analysis , 2005, Statistical applications in genetics and molecular biology.

[131]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[132]  B. Frey,et al.  The human splicing code reveals new insights into the genetic determinants of disease , 2015, Science.

[133]  Susan M Sunkin,et al.  Towards the integration of spatially and temporally resolved murine gene expression databases. , 2006, Trends in genetics : TIG.

[134]  Thomas Meitinger,et al.  Genome-wide association analysis identifies susceptibility loci for migraine without aura , 2012, Nature Genetics.

[135]  H. Simon,et al.  Linkage of cDNA expression profiles of mesencephalic dopaminergic neurons to a genome-wide in situ hybridization database , 2009, Molecular Neurodegeneration.

[136]  T. Prolla,et al.  Evolution of the Aging Brain Transcriptome and Synaptic Regulation , 2008, PloS one.

[137]  Michael Weiner,et al.  Voxelwise gene-wide association study (vGeneWAS): Multivariate gene-based association testing in 731 elderly subjects , 2011, NeuroImage.

[138]  M. Creyghton,et al.  Large-scale identification of coregulated enhancer networks in the adult human brain. , 2014, Cell reports.

[139]  Inyoul Y. Lee,et al.  A systems approach to prion disease , 2009, Molecular systems biology.

[140]  Lydia Ng,et al.  Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain , 2008, BMC Bioinformatics.

[141]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[142]  Florent Meyniel,et al.  Better Get Back to Work: A Role for Motor Beta Desynchronization in Incentive Motivation , 2014, The Journal of Neuroscience.

[143]  Jeroen de Ridder,et al.  Scale-space measures for graph topology link protein network architecture to function , 2014, Bioinform..

[144]  David J. Arenillas,et al.  JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles , 2009, Nucleic Acids Res..

[145]  Rosario M. Piro,et al.  Candidate gene prioritization based on spatially mapped gene expression: an application to XLMR , 2010, Bioinform..

[146]  S. Horvath,et al.  Functional organization of the transcriptome in human brain , 2008, Nature Neuroscience.

[147]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[148]  Fenna M. Krienen,et al.  Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain , 2016, Proceedings of the National Academy of Sciences.

[149]  Allan R. Jones,et al.  A High-Resolution Spatiotemporal Atlas of Gene Expression of the Developing Mouse Brain , 2014, Neuron.

[150]  L. Siever,et al.  Spatial and Temporal Mapping of De Novo Mutations in Schizophrenia to a Fetal Prefrontal Cortical Network , 2013, Cell.

[151]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[152]  Tetsuro Izumi,et al.  Modular Genetic Control of Sexually Dimorphic Behaviors , 2012, Cell.

[153]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[154]  Jouke Dijkstra,et al.  Large-Scale Mass Spectrometry Imaging Investigation of Consequences of Cortical Spreading Depression in a Transgenic Mouse Model of Migraine , 2015, Journal of The American Society for Mass Spectrometry.

[155]  Roded Sharan,et al.  Gene Expression in the Rodent Brain is Associated with Its Regional Connectivity , 2011, PLoS Comput. Biol..

[156]  Tatsuya Akutsu,et al.  Comparing biological networks via graph compression , 2010, BMC Systems Biology.

[157]  R. Faull,et al.  Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain , 2011, Nature Methods.

[158]  Shuiwang Ji Computational genetic neuroanatomy of the developing mouse brain: dimensionality reduction, visualization, and clustering , 2013, BMC Bioinformatics.

[159]  Leng Han,et al.  Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types , 2014, Nature Communications.

[160]  Daniel H. Geschwind,et al.  Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders , 2015, Nature Reviews Genetics.

[161]  A. Ewing,et al.  Imaging mass spectrometry in neuroscience. , 2013, ACS chemical neuroscience.

[162]  Sapna Kumari,et al.  Evaluation of Gene Association Methods for Coexpression Network Construction and Biological Knowledge Discovery , 2012, PloS one.

[163]  Michael J. Purcaro,et al.  The PsychENCODE project , 2015, Nature Neuroscience.

[164]  Hervé Abdi,et al.  Differences in Human Cortical Gene Expression Match the Temporal Properties of Large-Scale Functional Networks , 2014, PloS one.

[165]  Christopher Joseph Pal,et al.  Analyzing in situ gene expression in the mouse brain with image registration, feature extraction and block clustering , 2007, BMC Bioinformatics.

[166]  Allan R. Jones,et al.  Transcriptional Architecture of the Primate Neocortex , 2012, Neuron.

[167]  S. Djurovic,et al.  Conservation of Distinct Genetically-Mediated Human Cortical Pattern , 2016, PLoS genetics.

[168]  B. Frey,et al.  Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning , 2015, Nature Biotechnology.

[169]  Jeffrey L. Krichmar,et al.  Interactions between the neuromodulatory systems and the amygdala: exploratory survey using the Allen Mouse Brain Atlas , 2012, Brain Structure and Function.

[170]  Anton J. Enright,et al.  Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future , 2015, GigaScience.

[171]  L. McDonnell,et al.  Precise Anatomic Localization of Accumulated Lipids in Mfp2 Deficient Murine Brains Through Automated Registration of SIMS Images to the Allen Brain Atlas , 2015, Journal of The American Society for Mass Spectrometry.

[172]  Boudewijn P. F. Lelieveldt,et al.  Automatic registration of imaging mass spectrometry data to the Allen Brain Atlas transcriptome , 2014, Medical Imaging.

[173]  P. Expert,et al.  MENGA: A New Comprehensive Tool for the Integration of Neuroimaging Data and the Allen Human Brain Transcriptome Atlas , 2016, PloS one.

[174]  Andrei S. Rodin,et al.  Longitudinal epigenetic and gene expression profiles analyzed by three-component analysis reveal down-regulation of genes involved in protein translation in human aging , 2015, Nucleic acids research.

[175]  Allan R. Jones,et al.  Canonical Genetic Signatures of the Adult Human Brain , 2015, Nature Neuroscience.

[176]  Gal Chechik,et al.  FuncISH: learning a functional representation of neural ISH images , 2013, Bioinform..

[177]  Evan J. Kyzar,et al.  Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases , 2013, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[178]  Tal Nawy,et al.  Single-cell sequencing , 2013, Nature Methods.

[179]  Henning Hermjakob,et al.  The Reactome pathway Knowledgebase , 2015, Nucleic acids research.

[180]  Yi Huang,et al.  Mining biological information from 3D short time-series gene expression data: the OPTricluster algorithm , 2012, BMC Bioinformatics.

[181]  Allan R. Jones,et al.  Transcriptional Landscape of the Prenatal Human Brain , 2014, Nature.

[182]  Jaehoon Shin,et al.  Decoding neural transcriptomes and epigenomes via high-throughput sequencing , 2014, Nature Neuroscience.

[183]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[184]  David G. Stork,et al.  Pattern Classification , 1973 .

[185]  Sean R. Eddy,et al.  A tool for identification of genes expressed in patterns of interest using the Allen Brain Atlas , 2009, Bioinform..

[186]  Christopher D. Brown,et al.  Diving deeper to predict noncoding sequence function , 2015, Nature Methods.

[187]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[188]  Eran Segal,et al.  Using Expression Profiles of Caenorhabditis elegans Neurons To Identify Genes That Mediate Synaptic Connectivity , 2008, PLoS Comput. Biol..

[189]  Sara Ballouz,et al.  Assessment of functional convergence across study designs in autism , 2016 .

[190]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[191]  Robert B. Innis,et al.  Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot , 2016, NeuroImage.

[192]  Joana P. Gonçalves,et al.  LateBiclustering: Efficient Heuristic Algorithm for Time-Lagged Bicluster Identification , 2014, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[193]  A. Raj,et al.  Spatial patterns of genome‐wide expression profiles reflect anatomic and fiber connectivity architecture of healthy human brain , 2014, Human brain mapping.

[194]  B. Kholodenko,et al.  The dynamic control of signal transduction networks in cancer cells , 2015, Nature Reviews Cancer.

[195]  Vipin T. Sreedharan,et al.  A spatial and temporal map of C. elegans gene expression. , 2011, Genome research.

[196]  Sara Ballouz,et al.  Guidance for RNA-seq co-expression network construction and analysis: safety in numbers , 2015, Bioinform..

[197]  Bradley P. Coe,et al.  Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations , 2012, Nature.

[198]  Ed S Lein,et al.  Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-Seq , 2014, BMC Genomics.

[199]  Allan R. Jones,et al.  The Allen Brain Atlas: 5 years and beyond , 2009, Nature Reviews Neuroscience.

[200]  Johan Auwerx,et al.  Systematic Gene Expression Mapping Clusters Nuclear Receptors According to Their Function in the Brain , 2007, Cell.

[201]  Helgi B. Schiöth,et al.  Analysis of the network of feeding neuroregulators using the Allen Brain Atlas , 2008, Neuroscience & Biobehavioral Reviews.

[202]  Hans Clevers,et al.  Single-cell messenger RNA sequencing reveals rare intestinal cell types , 2015, Nature.

[203]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[204]  Shannon L. Risacher,et al.  Transcriptome-guided amyloid imaging genetic analysis via a novel structured sparse learning algorithm , 2014, Bioinform..

[205]  Rachael D. Seidler,et al.  A simple solution for model comparison in bold imaging: the special case of reward prediction error and reward outcomes , 2013, Front. Neurosci..

[206]  D. Viggiano,et al.  Brain distribution of genes related to changes in locomotor activity , 2010, Physiology & Behavior.

[207]  Krzysztof J. Gorgolewski,et al.  Bridging psychology and genetics using large-scale spatial analysis of neuroimaging and neurogenetic data , 2014, bioRxiv.

[208]  Allan R. Jones,et al.  Conserved molecular signatures of neurogenesis in the hippocampal subgranular zone of rodents and primates , 2013, Development.

[209]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[210]  M. Waterman,et al.  Gene coexpression measures in large heterogeneous samples using count statistics , 2014, Proceedings of the National Academy of Sciences.

[211]  Daniele Merico,et al.  Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder , 2014, Nature Genetics.

[212]  S. Horvath,et al.  Transcriptomic Analysis of Autistic Brain Reveals Convergent Molecular Pathology , 2011, Nature.

[213]  David C. Van Essen,et al.  The future of the human connectome , 2012, NeuroImage.

[214]  R. Caprioli,et al.  Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. , 1997, Analytical chemistry.

[215]  Shuiwang Ji,et al.  High-resolution prediction of mouse brain connectivity using gene expression patterns. , 2015, Methods.

[216]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[217]  Mingfeng Li,et al.  Laminar and temporal expression dynamics of coding and noncoding RNAs in the mouse neocortex. , 2014, Cell reports.

[218]  A. Singleton,et al.  Genome-wide association studies in neurological disorders , 2008, The Lancet Neurology.

[219]  Michel Verleysen,et al.  Nonlinear dimensionality reduction of data manifolds with essential loops , 2005, Neurocomputing.

[220]  Z. Zuo,et al.  Pyrrolidine dithiocarbamate attenuates surgery-induced neuroinflammation and cognitive dysfunction possibly via inhibition of nuclear factor κB , 2014, Neuroscience.

[221]  Min Chen,et al.  Comparing Statistical Methods for Constructing Large Scale Gene Networks , 2012, PloS one.

[222]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[223]  Valeria Fionda,et al.  Biological network analysis and comparison: mining new biological knowledge , 2011, Central European Journal of Computer Science.