Understanding the Plasmon Resonance in Ensembles of Degenerately Doped Semiconductor Nanocrystals

Inevitable variations in size and composition within nanocrystal ensembles affect their optical absorbance as revealed by effective medium theory calculations. We critically analyzed the effects of such inhomogeneity and of the surface ligands on the localized surface plasmon resonance absorption of In2O3:Sn and Cu2–xSe nanocrystal dispersions. Modeling the absorbance line shape readily provides valuable and quantitative insight into the structural, electrical, and optical properties of colloidal nanocrystals.

[1]  I. Hamberg,et al.  Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows , 1986 .

[2]  Li Zhang,et al.  Cuprous oxide nanoshells with geometrically tunable optical properties. , 2011, ACS nano.

[3]  M. R. Kim,et al.  Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals. , 2011, Journal of the American Chemical Society.

[4]  D. Blom,et al.  Au–Cu2O Core–Shell Nanoparticles: A Hybrid Metal-Semiconductor Heteronanostructure with Geometrically Tunable Optical Properties , 2011 .

[5]  Raffaella Buonsanti,et al.  Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. , 2011, Nano letters.

[6]  A Paul Alivisatos,et al.  Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. , 2012, Journal of the American Chemical Society.

[7]  Jun‐Jie Zhu,et al.  Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. , 2009, Journal of the American Chemical Society.

[8]  C. Noguez Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment , 2007 .

[9]  Yixin Zhao,et al.  Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials , 2012 .

[10]  M. Bonn,et al.  Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas. , 2010, Optics express.

[11]  Evan L. Runnerstrom,et al.  Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. , 2011, Nano letters.

[12]  A Paul Alivisatos,et al.  Localized surface plasmon resonances arising from free carriers in doped quantum dots. , 2011, Nature materials.

[13]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[14]  L. Manna,et al.  Colloidal Cu2−x(SySe1−y) alloy nanocrystals with controllable crystal phase: synthesis, plasmonic properties, cation exchange and electrochemical lithiation , 2012 .

[15]  Paul Mulvaney,et al.  Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters , 2000 .

[16]  A. Tao,et al.  Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. , 2011, Journal of the American Chemical Society.

[17]  D. Milliron,et al.  Extracting reliable electronic properties from transmission spectra of indium tin oxide thin films and nanocrystal films by careful application of the Drude theory , 2012 .

[18]  Tarasankar Pal,et al.  Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. , 2007, Chemical reviews.

[19]  Paul Mulvaney,et al.  Synthesis of Nanosized Gold−Silica Core−Shell Particles , 1996 .

[20]  R. Schaller,et al.  Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. , 2012, Journal of the American Chemical Society.

[21]  G. Lanzani,et al.  Plasmon dynamics in colloidal Cu₂-xSe nanocrystals. , 2011, Nano letters.

[22]  A. Sihvola Mixing Rules with Complex Dielectric Coefficients , 2000 .

[23]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[24]  Horst Weller,et al.  Electrochromism of Highly Doped Nanocrystalline SnO2:Sb , 2000 .

[25]  F. Ruske,et al.  Optical characterization of aluminum-doped zinc oxide films by advanced dispersion theories , 2004 .

[26]  V. Gorbachev,et al.  Some parameters of band structure in copper selenide and telluride , 1973 .

[27]  S. Ghosh,et al.  Solvent and Ligand Effects on the Localized Surface Plasmon Resonance (LSPR) of Gold Colloids , 2004 .

[28]  D. Gamelin,et al.  Doped Semiconductor Nanocrystals: Synthesis, Characterization, Physical Properties, and Applications , 2005 .

[29]  Y. Yamaguchi,et al.  The kinetics of growth of semiconductor nanocrystals in a hot amphiphile matrix. , 2000, Advances in colloid and interface science.