A graph theoretical approach to the elucidation of reaction mechanisms: Analysis of the chlorine electrode reaction

[1]  R. Greef,et al.  The kinetics of the chlorine electrode reaction at a platinum electrode , 1969 .

[2]  T. Yokoyama,et al.  Mechanism of the chlorine electrode reaction on platinum, iridium and rhodium in aqueous hydrochloric acid , 1970 .

[3]  Carsten Thomassen,et al.  Hamiltonian-connected tournaments , 1980, J. Comb. Theory, Ser. B.

[4]  L. I. Krishtalik Kinetics and mechanism of anodic chlorine and oxygen evolution reactions on transition metal oxide electrodes , 1981 .

[5]  Fred B. Schneider,et al.  A Logical Approach to Discrete Math , 1993, Texts and Monographs in Computer Science.

[6]  Raul E. Valds-Prez Algebraic reasoning about reactions: Discovery of conserved properties in particle physics , 1994 .

[7]  Human/computer interactive elucidation of reaction mechanisms: application to catalyzed hydrogenolysis of ethane , 1994 .

[8]  Raúl E. Valdés-Pérez,et al.  Heuristics for systematic elucidation of reaction pathways , 1994, J. Chem. Inf. Comput. Sci..

[9]  Xenophon E. Verykios,et al.  Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts: II. A Steady-State Tracing Analysis: Mechanistic Aspects of the Carbon and Oxygen Reaction Pathways to Form CO , 1996 .

[10]  Abel C. Chialvo,et al.  The polarisation resistance, exchange current density and stoichiometric number for the hydrogen evolution reaction: theoretical aspects , 1996 .

[11]  José L. Fernández,et al.  Analysis of the Volmer–Krishtalic mechanism for the chlorine electrode reaction , 2000 .

[12]  Raúl E. Valdés-Pérez,et al.  How Hard Is Mechanism Elucidation in Catalysis? Combinatorial Analysis of C1 Chemistry. , 2000 .

[13]  Raúl E. Valdés-Pérez,et al.  Proposed Methodological Improvement in the Elucidation of Chemical Reaction Mechanisms Based on Chemist-Computer Interaction , 2000 .

[14]  Abel C. Chialvo,et al.  Kinetic study of the chlorine electrode reaction on Ti/RuO 2 through the polarisation resistance , 2002 .

[15]  Botond Bertók,et al.  A Graph-theoretic Method to Identify Candidate Mechanisms for Deriving the Rate Law of a Catalytic Reaction , 2002, Comput. Chem..

[16]  José L. Fernández,et al.  Kinetic study of the chlorine electrode reaction on Ti/RuO2 through the polarisation resistance: Part I: experimental results and analysis of the pH effects , 2002 .

[17]  José L. Fernández,et al.  Kinetic study of the chlorine electrode reaction on Ti/RuO2 through the polarisation resistance: Part III: proposal of a reaction mechanism , 2002 .

[18]  José L. Fernández,et al.  Kinetic study of the chlorine electrode reaction on Ti/RuO2 through the polarisation resistance: Part II: mechanistic analysis , 2002 .

[19]  Ilie Fishtik,et al.  Reaction Route Graphs. II. Examples of Enzyme- and Surface-Catalyzed Single Overall Reactions , 2004 .

[20]  Raúl E. Valdés-Pérez,et al.  Algebraic Reasoning about Reactions: Discovery of Conserved Properties in Particle Physics , 1994, Machine Learning.

[21]  F. Friedler,et al.  Graph-theoretical identification of pathways for biochemical reactions , 2001, Biotechnology Letters.

[22]  Ilie Fishtik,et al.  Reaction Route Graphs. I. Theory and Algorithm , 2004 .

[23]  Ilie Fishtik,et al.  Reaction route graphs. III. Non-minimal kinetic mechanisms. , 2005, The journal of physical chemistry. B.

[24]  Ilie Fishtik,et al.  Systematic generation of thermochemical cycles for water splitting , 2008, Comput. Chem. Eng..

[25]  L. T. Fan,et al.  Graph-theoretic approach to the catalytic-pathway identification of methanol decomposition , 2009 .

[26]  Thomas Bligaard,et al.  Electrochemical chlorine evolution at rutile oxide (110) surfaces. , 2010, Physical chemistry chemical physics : PCCP.

[27]  Ilie Fishtik,et al.  Kinetics of the Hydrogen Electrode Reaction , 2010 .