Generating surface crack patterns

We present a method for generating surface crack patterns that appear in materials such as mud, ceramic glaze, and glass. To model these phenomena, we build upon existing physically based methods. Our algorithm generates cracks from a stress field defined heuristically over a triangle discretization of the surface. The simulation produces cracks by evolving this field over time. The user can control the characteristics and appearance of the cracks using a set of simple parameters. By changing these parameters, we have generated examples similar to a variety of crack patterns found in the real world. We assess the realism of our results by comparison with photographs of real-world examples. Using a physically based approach also enables us to generate animations similar to time-lapse photography.

[1]  Eitan Grinspun,et al.  A Discrete Model for Inelastic Deformation of Thin Shells , 2004 .

[2]  Laurent Lucas,et al.  A Dynamic Model of Cracks Development Based on a 3D Discrete Shrinkage Volume Propagation , 2008, Comput. Graph. Forum.

[3]  Koichi Hirota,et al.  Generation of crack patterns with a physical model , 1998, The Visual Computer.

[4]  Jessica K. Hodgins,et al.  Presented at , 1970 .

[5]  Andrew V. Wolfsberg,et al.  Rock Fractures and Fluid Flow: Contemporary Understanding and Applications , 1997 .

[6]  Leonidas J. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[7]  S Kitsunezaki Fracture patterns induced by desiccation in a thin layer. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Samir Akkouche,et al.  Procedural modeling of cracks and fractures , 2004, Proceedings Shape Modeling Applications, 2004..

[9]  Markus H. Gross,et al.  Physically-based simulation of objects represented by surface meshes , 2004, Proceedings Computer Graphics International, 2004..

[10]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[11]  Pavol Federl,et al.  Modelling fracture formation in bi-layered materials , with applications to tree bark and drying mud , 2000 .

[12]  Hong Qin,et al.  Meshless thin-shell simulation based on global conformal parameterization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[13]  Wen-Kai Tai,et al.  Flexible and Interactive Crack-Like Patterns Presentation on 3D Objects , 2004, ISCIS.

[14]  George L. Miller,et al.  The Parks Canada glass glossary for the description of containers, tableware, flat glass, and closures , 1985 .

[15]  Laurent Lucas,et al.  A Generalized Cracks Simulation on 3D-Meshes , 2006, NPH.

[16]  Robert Bacon,et al.  Animation of fracture by physical modeling , 1991, The Visual Computer.

[17]  Samir Akkouche,et al.  Modeling cracks and fractures , 2005, The Visual Computer.

[18]  J. R. Bruyn,et al.  Development and geometry of isotropic and directional shrinkage-crack patterns. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Michael Ortiz,et al.  A cohesive approach to thin-shell fracture and fragmentation , 2005 .

[20]  Pierre L'Ecuyer,et al.  Random numbers for simulation , 1990, CACM.

[21]  T. Belytschko,et al.  Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .

[22]  Andrew M. Stuart,et al.  A First Course in Continuum Mechanics , 2008 .

[23]  Xiaoru Yuan,et al.  Integrating Mesh and Meshfree Methods for Physics-Based Fracture and Debris Cloud Simulation , 2006, PBG@SIGGRAPH.

[24]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[25]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[26]  Brian Wyvill,et al.  Rendering cracks in Batik , 2004, NPAR '04.

[27]  S. K. Park,et al.  Random number generators: good ones are hard to find , 1988, CACM.

[28]  Graham W. Horgan,et al.  An empirical stochastic model for the geometry of two-dimensional crack growth in soil (with Discussion). , 2000 .

[29]  Atilla Aydin,et al.  Unweaving the joints in Entrada Sandstone, Arches National Park, Utah, U.S.A. , 1995 .

[30]  P. Meakin,et al.  Fracture in microsphere monolayers studied by experiment and computer simulation , 1988, Nature.

[31]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[32]  Hans-Jörg Vogel,et al.  Studies of crack dynamics in clay soil. I. Experimental methods, results and morphological quantification , 2005 .

[33]  Edith Perrier,et al.  Computer construction of fractal soil structures: Simulation of their hydraulic and shrinkage properties , 1995 .

[34]  Stephen Bourne,et al.  Predictive Modelling of Naturally Fractured Reservoirs Using Geomechanics and Flow Simulation , 2001, GeoArabia.

[35]  David Mould,et al.  Image-guided fracture , 2005, Graphics Interface.

[36]  S. Gobron,et al.  Crack pattern simulation based on 3D surface cellular automata , 2000, Proceedings Computer Graphics International 2000.

[37]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[38]  Bruce Velde,et al.  Structure of surface cracks in soil and muds , 1999 .

[39]  Toshihisa Nishioka,et al.  Computational dynamic fracture mechanics , 1997 .

[40]  Ronald Fedkiw,et al.  Fracturing Rigid Materials , 2007, IEEE Transactions on Visualization and Computer Graphics.

[41]  Hans-Jörg Vogel,et al.  Studies of crack dynamics in clay soil. II. A physically based model for crack formation , 2005 .

[42]  Shigeru Kuriyama,et al.  Physically-based simulation of cracks on drying 3D solid , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[43]  W. D. Means Stress and Strain: Basic Concepts of Continuum Mechanics for Geologists , 1976 .

[44]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[45]  Jessica K. Hodgins,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH.

[46]  G. T. Kirnichanskii,et al.  Fracture of rocks , 1986 .

[47]  Przemyslaw Prusinkiewicz,et al.  Finite Element Model of Fracture Formation on Growing Surfaces , 2004, International Conference on Computational Science.

[48]  Koichi Hirota,et al.  Simulation of three-dimensional cracks , 2000, The Visual Computer.

[49]  Eva Hakami,et al.  ROCK FRACTURES , 2004 .

[50]  Tom Manzocchi,et al.  Scaling relationships of joint and vein arrays from The Burren, Co. Clare, Ireland , 2001 .

[51]  Baining Guo,et al.  Context-aware textures , 2007, TOGS.

[52]  Ronald Fedkiw,et al.  A virtual node algorithm for changing mesh topology during simulation , 2004, ACM Trans. Graph..

[53]  Y. Couder,et al.  Hierarchical crack pattern as formed by successive domain divisions. II. From disordered to deterministic behavior. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Pierre Poulin,et al.  The Simulation of Paint Cracking and Peeling , 2002, Graphics Interface.

[55]  Jon E. Olson,et al.  Inferring paleostresses from natural fracture patterns; a new method , 1989 .

[56]  James F. O'Brien,et al.  Generating surface crack patterns , 2006 .

[57]  John C. Lorenz,et al.  Interpreting Fracture Patterns in Sandstones Interbedded with Ductile Strata at the Salt Valley Anticline, Arches National Park, Utah , 2001 .

[58]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[59]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[60]  D. Pollard,et al.  Progress in understanding jointing over the past century , 1988 .

[61]  Michael I. Jordan Graphical Models , 1998 .

[62]  William H. Press,et al.  Numerical recipes in C , 2002 .

[63]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[64]  J. R. Taylor,et al.  Ceramics Glaze Technology , 1986 .

[65]  T. Rabczuk,et al.  A meshfree thin shell method for non‐linear dynamic fracture , 2007 .

[66]  Norishige Chiba,et al.  Simulation of peeling using 3D-surface cellular automata , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.

[67]  Y. Couder,et al.  Hierarchical crack pattern as formed by successive domain divisions. I. Temporal and geometrical hierarchy. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.