An Approach to Minimize Atmospheric Correction Error and Improve Physics-Based Satellite-Derived Bathymetry in a Coastal Environment

[1]  Carl J. Legleiter,et al.  Removing sun glint from optical remote sensing images of shallow rivers , 2017 .

[2]  Chris Roelfsema,et al.  A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data , 2009 .

[3]  Stefan Adriaensen,et al.  Atmospheric Correction Inter-comparison eXercise , 2018, Remote. Sens..

[4]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[5]  Kenton Lee,et al.  Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance , 2014, Remote. Sens..

[6]  D. Lyzenga Passive remote sensing techniques for mapping water depth and bottom features. , 1978, Applied optics.

[7]  P. Harris,et al.  Satellite-derived bathymetry in optically complex waters using a model inversion approach and Sentinel-2 data , 2020 .

[8]  Jay Gao,et al.  Bathymetric mapping by means of remote sensing: methods, accuracy and limitations , 2009 .

[9]  John R. Schott,et al.  Landsat 8 Remote Sensing Reflectance (Rrs) Products: Evaluations, Intercomparisons, and Enhancements , 2017 .

[10]  Hongxing Liu,et al.  Automated Derivation of Bathymetric Information from Multi-Spectral Satellite Imagery Using a Non-Linear Inversion Model , 2008 .

[11]  Gregory G. Leptoukh,et al.  Online analysis enhances use of NASA Earth science data , 2007 .

[12]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[13]  John D. Hedley,et al.  Technical note: Simple and robust removal of sun glint for mapping shallow‐water benthos , 2005 .

[14]  Stéphane Maritorena,et al.  Optimization of a semianalytical ocean color model for global-scale applications. , 2002, Applied optics.

[15]  Vittorio E. Brando,et al.  Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality , 2003, IEEE Trans. Geosci. Remote. Sens..

[16]  René Chénier,et al.  Satellite-Derived Bathymetry for Improving Canadian Hydrographic Service Charts , 2018, ISPRS Int. J. Geo Inf..

[17]  Vittorio E. Brando,et al.  Effects of Per-Pixel Variability on Uncertainties in Bathymetric Retrievals from High-Resolution Satellite Images , 2016, Remote. Sens..

[18]  Larry Leigh,et al.  The Ground-Based Absolute Radiometric Calibration of Landsat 8 OLI , 2015, Remote. Sens..

[19]  K. Ruddick,et al.  Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. , 2000, Applied optics.

[20]  Mireille Guillaume,et al.  Hyperspectral remote sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance , 2017 .

[21]  Arnold G. Dekker,et al.  A methodology for retrieval of environmental noise equivalent spectra applied to four Hyperion scenes of the same tropical coral reef , 2004 .

[22]  David R. Lyzenga,et al.  Shallow-water bathymetry using combined lidar and passive multispectral scanner data , 1985 .

[23]  B. Koetz,et al.  Capability of the Sentinel 2 mission for tropical coral reef mapping and coral bleaching detection , 2012 .

[24]  C. Giardino,et al.  Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters , 2019, Remote Sensing of Environment.

[25]  Anders Knudby,et al.  Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing , 2019, Remote. Sens..

[26]  D. Lyzenga Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data , 1981 .

[27]  Quinten Vanhellemont,et al.  Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications , 2018, Remote Sensing of Environment.

[28]  William J. Reeder,et al.  Mapping river bathymetries: Evaluating topobathymetric LiDAR survey , 2018, Earth Surface Processes and Landforms.

[29]  Alexei Lyapustin,et al.  Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study. , 2008, Applied optics.

[30]  T. Harmel,et al.  Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands , 2018 .

[31]  Wojciech M. Klonowski,et al.  Intercomparison of shallow water bathymetry, hydro‐optics, and benthos mapping techniques in Australian and Caribbean coastal environments , 2011 .

[32]  K. Ruddick,et al.  Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8 , 2015 .

[33]  Anders Knudby,et al.  The Potential for Landsat-Based Bathymetry in Canada , 2016 .

[34]  A. Knudby,et al.  Satellite-derived bathymetry using a radiative transfer-based method: A comparison of different atmospheric correction methods , 2019, OCEANS 2019 MTS/IEEE SEATTLE.

[35]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization. , 1999, Applied optics.

[36]  Trijntje Valerie Downes,et al.  Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. , 2005, Applied optics.

[37]  Minwei Zhang,et al.  Evaluation of Remote Sensing Reflectance Derived From the Sentinel-2 Multispectral Instrument Observations Using POLYMER Atmospheric Correction , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[38]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. I. A semianalytical model. , 1998, Applied optics.

[39]  Sam Ahmed,et al.  Blue band reflectance uncertainties in coastal waters and their impact on retrieval algorithms , 2020, Defense + Commercial Sensing.

[40]  E. Fry,et al.  Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. , 1997, Applied optics.

[41]  Stuart R. Phinn,et al.  Efficient radiative transfer model inversion for remote sensing applications , 2009 .