Plasmonic nanopore prepared on MoS2 membrane-hybrid nanostructures based on site selective deposition

Here, we propose easy and robust strategies for the versatile integration 2D material flakes on plasmonic nanoholes by means of site selective deposition of MoS2. The methods can be applied both to simple metallic flat nanostructures and to complex 3D metallic structures comprising nanoholes. The deposition methods allow the decoration of large ordered arrays of plasmonic structures with single or few layers of MoS2. We show that the plasmonic field generated by the nanohole can interact significantly with the 2D layer, thus representing an ideal system for hybrid 2DMaterial/ Plasmonic investigation. The controlled/ordered integration of 2D materials on plasmonic nanostructures opens a pathway towards new investigation of the following: enhanced light emission; strong coupling from plasmonic hybrid structures; hot electron generation; and sensors in general based on 2D materials.

[1]  Hui Li,et al.  Disposable MoS2-Arrayed MALDI MS Chip for High-Throughput and Rapid Quantification of Sulfonamides in Multiple Real Samples. , 2018, ACS sensors.

[2]  Denis Garoli,et al.  Directly patternable high refractive index ferroelectric sol–gel resist , 2015 .

[3]  Ting Yu,et al.  Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2. , 2016, Nano letters.

[4]  Umakant M. Patil,et al.  A binder free synthesis of 1D PANI and 2D MoS2 nanostructured hybrid composite electrodes by the electrophoretic deposition (EPD) method for supercapacitor application , 2016 .

[5]  Paolo Vavassori,et al.  Site-Selective Integration of MoS2 Flakes on Nanopores by Means of Electrophoretic Deposition , 2018, ACS omega.

[6]  K Dinakaran,et al.  Sensitive fluorescence detection of mercury(ii) in aqueous solution by the fluorescence quenching effect of MoS2 with DNA functionalized carbon dots. , 2016, The Analyst.

[7]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[8]  Vinayak P. Dravid,et al.  Valley-polarized exciton–polaritons in a monolayer semiconductor , 2017, Nature Photonics.

[9]  D. Garoli,et al.  Boosting infrared energy transfer in 3D nanoporous gold antennas. , 2017, Nanoscale.

[10]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[11]  Julio Gómez-Herrero,et al.  2D materials: to graphene and beyond. , 2011, Nanoscale.

[12]  Bumsu Lee,et al.  Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Array. , 2015, Nano letters.

[13]  Li Lin,et al.  Corrigendum: Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity , 2016, Nature Communications.

[14]  Qiaoqiang Gan,et al.  MoS2 monolayers on nanocavities: enhancement in light–matter interaction , 2016 .

[15]  Bengkang Tay,et al.  Tailoring MoS2 Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling. , 2017, ACS nano.

[16]  Kebin Shi,et al.  Ultrafast Plasmonic Hot Electron Transfer in Au Nanoantenna/MoS2 Heterostructures , 2016 .

[17]  Jeng-Yu Lin,et al.  Electrophoretic deposition of transparent MoS2-graphene nanosheet composite films as counter electrodes in dye-sensitized solar cells. , 2013, Chemical communications.

[18]  B. P. Singh,et al.  Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling , 2017, Scientific Reports.

[19]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[20]  Moreno Meneghetti,et al.  Microscopic View on a Chemical Vapor Deposition Route to Boron-Doped Graphene Nanostructures , 2013 .

[21]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[22]  James M Tour,et al.  Graphene Quantum Dots Doping of MoS2 Monolayers , 2015, Advanced materials.

[23]  Francesco De Angelis,et al.  Modified three-dimensional nanoantennas for infrared hydrogen detection , 2016 .

[24]  Jing Kong,et al.  Tailored emission spectrum of 2D semiconductors using plasmonic nanocavities , 2017 .

[25]  Yimin Kang,et al.  Plasmonic Hot Electron Induced Structural Phase Transition in a MoS2 Monolayer , 2014, Advanced materials.

[26]  Sefaattin Tongay,et al.  Enhanced light emission from large-area monolayer MoS₂ using plasmonic nanodisc arrays. , 2015, Nano letters.

[27]  W. Tisdale,et al.  Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2. , 2014, Nano letters.

[28]  Jianxin Zhong,et al.  3D Binder-free MoSe2 Nanosheets/Carbon Cloth Electrodes for Efficient and Stable Hydrogen Evolution Prepared by Simple Electrophoresis Deposition Strategy , 2016, Scientific Reports.

[29]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[30]  Bumsu Lee,et al.  Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice. , 2015, Nano letters.

[31]  Min Su Kim,et al.  Selective Amplification of the Primary Exciton in a MoS_{2} Monolayer. , 2015, Physical review letters.

[32]  Francesco De Angelis,et al.  Nanoscale thermal gradients activated by antenna-enhanced molecular absorption in the mid-infrared , 2019, Applied Physics Letters.

[33]  Koray Aydin,et al.  Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals. , 2015, ACS nano.

[34]  Alexey Chernikov,et al.  Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and MoSe2/WSe2. , 2015, Nano letters.

[35]  Lei Zhang,et al.  Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures , 2016, Nature Communications.

[36]  Michele Dipalo,et al.  Hybrid plasmonic nanostructures based on controlled integration of MoS2 flakes on metallic nanoholes. , 2018, Nanoscale.

[37]  Lukas Novotny,et al.  Integrated nanophotonics based on nanowire plasmons and atomically thin material , 2014, 1404.1853.

[38]  Yimin Kang,et al.  Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution. , 2015, Nanoscale.

[39]  B. D'Anjou,et al.  Experimental Review of Graphene , 2011, 1110.6557.

[40]  Valeria Caprettini,et al.  Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays , 2018, Nature Nanotechnology.

[41]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[42]  Francesco De Angelis,et al.  Site-selective functionalization of plasmonic nanopores for enhanced fluorescence emission rate and Förster resonance energy transfer , 2018, Nanoscale advances.

[43]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[44]  Francesco De Angelis,et al.  Beaming of Helical Light from Plasmonic Vortices via Adiabatically Tapered Nanotip , 2016, Nano letters.

[45]  Fengnian Xia,et al.  Strong light–matter coupling in two-dimensional atomic crystals , 2014, Nature Photonics.

[46]  Francesco De Angelis,et al.  Helicity locking of chiral light emitted from a plasmonic nanotaper. , 2017, Nanoscale.

[47]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[48]  Stefano Agnoli,et al.  Second generation graphene: Opportunities and challenges for surface science , 2013 .