A family of embedded Runge-Kutta formulae

[1]  P. J. Prince,et al.  New Runge-Kutta algorithms for numerical simulation in dynamical astronomy , 1978 .

[2]  T. E. Hull,et al.  A Theoretical Criterion for Comparing Runge–Kutta Formulas , 1978 .

[3]  René Alt,et al.  A-stable one-step methods with step-size control for stiff systems of ordinary differential equations , 1978 .

[4]  W. H. Enright,et al.  Test Results on Initial Value Methods for Non-Stiff Ordinary Differential Equations , 1976 .

[5]  Lawrence F. Shampine,et al.  Global Error Estimates for Ordinary Differential Equations , 1976, TOMS.

[6]  L. F. Shampire Quadrature and Runge-Kutta formulas , 1976 .

[7]  J. Lambert Computational Methods in Ordinary Differential Equations , 1973 .

[8]  T. E. Hull,et al.  Comparing Numerical Methods for Ordinary Differential Equations , 1972 .

[9]  E. Fehlberg,et al.  Classical eight- and lower-order Runge-Kutta-Nystroem formulas with stepsize control for special second-order differential equations , 1972 .

[10]  E. Fehlberg,et al.  Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems , 1969 .

[11]  R. England,et al.  Error estimates for Runge-Kutta type solutions to systems of ordinary differential equations , 1969, Comput. J..

[12]  E. Fehlberg Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with Stepsize Control , 1968 .

[13]  J. D. Lawson An Order Five Runge-Kutta Process with Extended Region of Stability , 1966 .

[14]  J. Butcher On Runge-Kutta processes of high order , 1964, Journal of the Australian Mathematical Society.

[15]  J. Butcher Coefficients for the study of Runge-Kutta integration processes , 1963, Journal of the Australian Mathematical Society.